Closed-loop state feedback in linear problems of terminal control
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem for a linear discrete system with unknown limited disturbances, which must be transferred to a terminal set in a finite time, while providing a minimum guaranteed value of the terminal quality criterion. We discuss two approaches to constructing optimal feedbacks: the disconnectable feedback, which is determined through optimal guarantee programs, and the closed feedback based on optimal control strategies with closures. We discuss disadvantages of the first approach and propose an effective method of constructing optimal closed real-time feedback.
Keywords: linear system, disturbance, optimal control, feedback, real-time control.
@article{INTO_2023_224_a5,
     author = {N. M. Dmitruk},
     title = {Closed-loop state feedback in linear problems of terminal control},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/}
}
TY  - JOUR
AU  - N. M. Dmitruk
TI  - Closed-loop state feedback in linear problems of terminal control
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 43
EP  - 53
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/
LA  - ru
ID  - INTO_2023_224_a5
ER  - 
%0 Journal Article
%A N. M. Dmitruk
%T Closed-loop state feedback in linear problems of terminal control
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 43-53
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/
%G ru
%F INTO_2023_224_a5
N. M. Dmitruk. Closed-loop state feedback in linear problems of terminal control. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 43-53. http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/

[1] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. mat. mat. fiz., 40:6 (2000), 838–859 | MR | Zbl

[2] Balashevich N. V., Gabasov R., Kirillova F. M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 265–286 | MR | Zbl

[3] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimizatsiya mnogomernykh sistem upravleniya s parallelepipednymi ogranicheniyami”, Avtomat. telemekh., 63:3 (2002), 3–26 | MR | Zbl

[4] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii. Ch. 2. Zadachi upravleniya, Minsk, 1984 | MR

[5] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomat. telemekh., 57:7 (1996), 121–130 | MR | Zbl

[6] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomat. telemekh., 57:8 (1996), 90–99 | MR | Zbl

[7] Gabasov R., Kirillova F. M., Kostyukova O. I., “Postroenie optimalnykh upravlenii tipa obratnoi svyazi v lineinoi zadache”, Dokl. AN SSSR., 320:6 (1991), 1294–1299 | MR

[8] Dmitruk N. M., “Mnogokratno zamykaemaya strategiya upravleniya v lineinoi terminalnoi zadache optimalnogo garantirovannogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 28:3 (2022), 66–82 | Zbl

[9] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[10] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978

[11] Boyd S., Vandenberghe L., Convex Optimization, Cambridge Univ. Press, New York, 2004 | MR | Zbl

[12] Kastsiukevich D. A., Dmitruk N. M., “A method for constructing an optimal control strategy in a linear terminal problem”, J. Belarus. State Univ. Math. Inform., 2021, no. 2, 38–50 | DOI | MR

[13] Kostyukova O., Kostina E., “Robust optimal feedback for terminal linear-quadratic control problems under disturbances”, Math. Program., 107:1–2 (2006), 131–153 | DOI | MR | Zbl

[14] Lee J. H., Yu Z., “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica., 33:15 (1997), 763–781 | DOI | MR | Zbl