Closed-loop state feedback in linear problems of terminal control
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 43-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the optimal control problem for a linear discrete system with unknown limited disturbances, which must be transferred to a terminal set in a finite time, while providing a minimum guaranteed value of the terminal quality criterion. We discuss two approaches to constructing optimal feedbacks: the disconnectable feedback, which is determined through optimal guarantee programs, and the closed feedback based on optimal control strategies with closures. We discuss disadvantages of the first approach and propose an effective method of constructing optimal closed real-time feedback.
Keywords:
linear system, disturbance, optimal control, feedback, real-time control.
@article{INTO_2023_224_a5,
author = {N. M. Dmitruk},
title = {Closed-loop state feedback in linear problems of terminal control},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {43--53},
publisher = {mathdoc},
volume = {224},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/}
}
TY - JOUR AU - N. M. Dmitruk TI - Closed-loop state feedback in linear problems of terminal control JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 43 EP - 53 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/ LA - ru ID - INTO_2023_224_a5 ER -
%0 Journal Article %A N. M. Dmitruk %T Closed-loop state feedback in linear problems of terminal control %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 43-53 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/ %G ru %F INTO_2023_224_a5
N. M. Dmitruk. Closed-loop state feedback in linear problems of terminal control. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 43-53. http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/