Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a5, author = {N. M. Dmitruk}, title = {Closed-loop state feedback in linear problems of terminal control}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {43--53}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/} }
TY - JOUR AU - N. M. Dmitruk TI - Closed-loop state feedback in linear problems of terminal control JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 43 EP - 53 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/ LA - ru ID - INTO_2023_224_a5 ER -
%0 Journal Article %A N. M. Dmitruk %T Closed-loop state feedback in linear problems of terminal control %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 43-53 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/ %G ru %F INTO_2023_224_a5
N. M. Dmitruk. Closed-loop state feedback in linear problems of terminal control. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 43-53. http://geodesic.mathdoc.fr/item/INTO_2023_224_a5/
[1] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. mat. mat. fiz., 40:6 (2000), 838–859 | MR | Zbl
[2] Balashevich N. V., Gabasov R., Kirillova F. M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 265–286 | MR | Zbl
[3] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimizatsiya mnogomernykh sistem upravleniya s parallelepipednymi ogranicheniyami”, Avtomat. telemekh., 63:3 (2002), 3–26 | MR | Zbl
[4] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii. Ch. 2. Zadachi upravleniya, Minsk, 1984 | MR
[5] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomat. telemekh., 57:7 (1996), 121–130 | MR | Zbl
[6] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomat. telemekh., 57:8 (1996), 90–99 | MR | Zbl
[7] Gabasov R., Kirillova F. M., Kostyukova O. I., “Postroenie optimalnykh upravlenii tipa obratnoi svyazi v lineinoi zadache”, Dokl. AN SSSR., 320:6 (1991), 1294–1299 | MR
[8] Dmitruk N. M., “Mnogokratno zamykaemaya strategiya upravleniya v lineinoi terminalnoi zadache optimalnogo garantirovannogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 28:3 (2022), 66–82 | Zbl
[9] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR
[10] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978
[11] Boyd S., Vandenberghe L., Convex Optimization, Cambridge Univ. Press, New York, 2004 | MR | Zbl
[12] Kastsiukevich D. A., Dmitruk N. M., “A method for constructing an optimal control strategy in a linear terminal problem”, J. Belarus. State Univ. Math. Inform., 2021, no. 2, 38–50 | DOI | MR
[13] Kostyukova O., Kostina E., “Robust optimal feedback for terminal linear-quadratic control problems under disturbances”, Math. Program., 107:1–2 (2006), 131–153 | DOI | MR | Zbl
[14] Lee J. H., Yu Z., “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica., 33:15 (1997), 763–781 | DOI | MR | Zbl