On the exact solution of a certain system of hyperbolic differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 35-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct an exact solution of a first-order hyperbolic system of partial differential equations containing linear and quadratic nonlinear equations. Also, we construct a solution of the initial-value (Cauchy) problem for a linear hyperbolic system and a solution of an initial-boundary-value problem for a nonlinear hyperbolic system.
Keywords:
partial derivative, hyperbolic system, Cauchy problem
Mots-clés : exact solution.
Mots-clés : exact solution.
@article{INTO_2023_224_a4,
author = {E. Yu. Grazhdantseva},
title = {On the exact solution of a certain system of hyperbolic differential equations},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {35--42},
publisher = {mathdoc},
volume = {224},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a4/}
}
TY - JOUR AU - E. Yu. Grazhdantseva TI - On the exact solution of a certain system of hyperbolic differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 35 EP - 42 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a4/ LA - ru ID - INTO_2023_224_a4 ER -
%0 Journal Article %A E. Yu. Grazhdantseva %T On the exact solution of a certain system of hyperbolic differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 35-42 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a4/ %G ru %F INTO_2023_224_a4
E. Yu. Grazhdantseva. On the exact solution of a certain system of hyperbolic differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 35-42. http://geodesic.mathdoc.fr/item/INTO_2023_224_a4/