First boundary-value problem for a class of elliptic systems in a half-space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Fourier transform, we examine the first boundary-value problem for two elliptic systems in a half-space. We prove that for both systems, the homogeneous problem has infinitely many solutions depending on one arbitrary function. At the same time, one of the systems is strongly connected under certain conditions for the coefficients of the system, whereas the second system is always strongly connected.
Keywords: elliptic system, first boundary-value problem, Dirichlet problem, strongly connected systems
Mots-clés : Fourier transform.
@article{INTO_2023_224_a3,
     author = {E. A. Golovko},
     title = {First boundary-value problem for a class of elliptic systems in a half-space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--34},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/}
}
TY  - JOUR
AU  - E. A. Golovko
TI  - First boundary-value problem for a class of elliptic systems in a half-space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 28
EP  - 34
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/
LA  - ru
ID  - INTO_2023_224_a3
ER  - 
%0 Journal Article
%A E. A. Golovko
%T First boundary-value problem for a class of elliptic systems in a half-space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 28-34
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/
%G ru
%F INTO_2023_224_a3
E. A. Golovko. First boundary-value problem for a class of elliptic systems in a half-space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 28-34. http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/

[1] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[2] Chernyaeva T. N., “Reshenie ne silno ellipticheskikh sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie., 46:2 (2015), 29–32

[3] Yanushauskas A. I., Granichnye zadachi dlya uravnenii v chastnykh proizvodnykh i integro-differentsialnye uravneniya, Izd-vo Irkut. un-ta, Irkutsk, 1997 | MR