First boundary-value problem for a class of elliptic systems in a half-space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 28-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the Fourier transform, we examine the first boundary-value problem for two elliptic systems in a half-space. We prove that for both systems, the homogeneous problem has infinitely many solutions depending on one arbitrary function. At the same time, one of the systems is strongly connected under certain conditions for the coefficients of the system, whereas the second system is always strongly connected.
Keywords:
elliptic system, first boundary-value problem, Dirichlet problem, strongly connected systems
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{INTO_2023_224_a3,
author = {E. A. Golovko},
title = {First boundary-value problem for a class of elliptic systems in a half-space},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {28--34},
publisher = {mathdoc},
volume = {224},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/}
}
TY - JOUR AU - E. A. Golovko TI - First boundary-value problem for a class of elliptic systems in a half-space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 28 EP - 34 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/ LA - ru ID - INTO_2023_224_a3 ER -
%0 Journal Article %A E. A. Golovko %T First boundary-value problem for a class of elliptic systems in a half-space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 28-34 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/ %G ru %F INTO_2023_224_a3
E. A. Golovko. First boundary-value problem for a class of elliptic systems in a half-space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 28-34. http://geodesic.mathdoc.fr/item/INTO_2023_224_a3/