Singular systems of differential equations in Banach spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 150-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

Degenerate linear systems of differential equations of a special form in Banach spaces are considered. The structure of the solution of the Cauchy problem for such systems is completely determined by the properties of the matrix and operator pencils of the system. Solutions are constructed in the space of distributions with support bounded on the left and are restored using the matrix fundamental operator function of the system. Based on the analysis of the generalized solution constructed in this way, one can obtain theorems on the solvability in the space of functions of finite smoothness of the original Cauchy problem.
Keywords: Banach space, Fredholm operator, generalized function, fundamental matrix operator-function
Mots-clés : sheaf of constant matrices.
@article{INTO_2023_224_a17,
     author = {M. V. Falaleev},
     title = {Singular systems of differential equations in {Banach} spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {150--160},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a17/}
}
TY  - JOUR
AU  - M. V. Falaleev
TI  - Singular systems of differential equations in Banach spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 150
EP  - 160
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a17/
LA  - ru
ID  - INTO_2023_224_a17
ER  - 
%0 Journal Article
%A M. V. Falaleev
%T Singular systems of differential equations in Banach spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 150-160
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a17/
%G ru
%F INTO_2023_224_a17
M. V. Falaleev. Singular systems of differential equations in Banach spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 150-160. http://geodesic.mathdoc.fr/item/INTO_2023_224_a17/

[1] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Prikl. mat. mekh., 24:5 (1960), 58–73

[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[3] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR

[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[5] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Usp. mat. nauk., 49:4 (1994), 47–74 | MR | Zbl

[6] Sidorov N. A., Romanova O. A., “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differ. uravn., 19:9 (1983), 1516–1526 | MR | Zbl

[7] Sidorov N. A., Romanova O. A., Blagodatskaya E. B., “Uravneniya s chastnymi proizvodnymi s operatorom konechnogo indeksa pri glavnoi chasti”, Differ. uravn., 30:4 (1994), 729–731 | Zbl

[8] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[9] Falaleev M. V., “Fundamentalnye operator-funktsii integro-differentsialnykh operatorov v usloviyakh spektralnoi ili polinomialnoi ogranichennosti”, Ufim. mat. zh., 12:2 (2020), 55–70 | Zbl

[10] Falaleev M. V., Korobova O. V., “Sistemy differentsialnykh uravnenii s vyrozhdeniem v banakhovykh prostranstvakh”, Sib. mat. zh., 49:4 (2008), 916–927 | MR | Zbl

[11] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR

[12] Chen G., Zhang H., “Initial boundary value problem for a system of generalized IMBq equations”, Math. Meth. Appl. Sci., 27 (2004), 497–518 | DOI | MR | Zbl

[13] Chen P. J., Gurtin M. E., “On a theory of heat concluction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl

[14] Falaleev M. V., “Convolutional integro-differential equations in Banach spaces with a Noetherian operator in the main part”, J. Sib. Fed. Univ. Math. Phys., 15:2 (2022), 148–159 | DOI | MR

[15] Hallaire M., “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72

[16] Nashed M. Z., Generalized Inverses and Applications, Academic Press, New York, 1976 | MR | Zbl

[17] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[18] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl

[19] Ting T. W., “Certain non-steady flows of second-order fluids”, Arch. Rat. Mech. Anal., 14:1 (1963), 28–57 | DOI | MR