Projection methods for improving controls in nonlinear control systems with terminal constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 142-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a new approach to the optimization of nonlinear control systems with terminal constraints based on the consecutive solution of nonlocal control improvement problems in the form of special systems of functional equations in the control space. The corresponding systems are constructed as fixed-point problems for special control operators with an additional algebraic equation. The methods of successive approximations of the control that preserve terminal constraints at each iteration used in this paper do not contain the time-consuming operation of parametric variation of the control, which is typical for common gradient methods.
Keywords: nonlinear control system, control improvement conditions, fixed point, iterative algorithm.
Mots-clés : terminal constraint
@article{INTO_2023_224_a16,
     author = {D. O. Trunin},
     title = {Projection methods for improving controls in nonlinear control systems with terminal constraints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {142--149},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a16/}
}
TY  - JOUR
AU  - D. O. Trunin
TI  - Projection methods for improving controls in nonlinear control systems with terminal constraints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 142
EP  - 149
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a16/
LA  - ru
ID  - INTO_2023_224_a16
ER  - 
%0 Journal Article
%A D. O. Trunin
%T Projection methods for improving controls in nonlinear control systems with terminal constraints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 142-149
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a16/
%G ru
%F INTO_2023_224_a16
D. O. Trunin. Projection methods for improving controls in nonlinear control systems with terminal constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 142-149. http://geodesic.mathdoc.fr/item/INTO_2023_224_a16/

[1] Bartenev O. V., Fortran dlya professionalov. Matematicheskaya biblioteka IMSL. Ch. 2, Dialog-MIFI, M., 2001

[2] Buldaev A. S., Metody vozmuschenii v zadachakh uluchsheniya i optimizatsii upravlyaemykh sistem, Izd-vo Buryat. gos. un-ta, Ulan-Ude, 2008

[3] Buldaev A. S., “Metody nepodvizhnykh tochek na osnove operatsii proektirovaniya v zadachakh optimizatsii upravlyayuschikh funktsii i parametrov”, Vestn. Buryat. gos. un-ta. Mat., inform., 1 (2017), 38–54

[4] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo Irkut. gos. un-ta, Irkutsk, 1994 | MR

[5] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989

[6] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[7] Tyatyushkin A. I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 1992