Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a15, author = {R. K. Tagiyev and Sh. I. Maharramli}, title = {Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {133--141}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/} }
TY - JOUR AU - R. K. Tagiyev AU - Sh. I. Maharramli TI - Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 133 EP - 141 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/ LA - ru ID - INTO_2023_224_a15 ER -
%0 Journal Article %A R. K. Tagiyev %A Sh. I. Maharramli %T Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 133-141 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/ %G ru %F INTO_2023_224_a15
R. K. Tagiyev; Sh. I. Maharramli. Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 133-141. http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/
[1] Alifanov O. A., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, M., 1988
[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, M., 1981 | MR
[3] Danilkina O. Yu., “Ob odnoi nelokalnoi zadache dlya uravneniya teploprovodnosti s integralnym usloviem”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 14:1 (2007), 5–9 | DOI | MR | Zbl
[4] Ivanchov N. I., “Kraevye zadachi dlya parabolicheskogo uravneniya s integralnymi usloviyami”, Differ. uravn., 40:4 (2004), 547–564 | MR | Zbl
[5] Iskenderov A. D., “O variatsionnykh postanovkakh mnogomernykh obratnykh zadach matematicheskoi fiziki”, Dokl. AN SSSR., 274:3 (1984), 531–533 | MR | Zbl
[6] Kozhanov A. I., “O razreshimosti kraevoi zadachi s nelokalnym granichnym usloviem dlya lineinykh parabolicheskikh uravnenii”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 2004, no. 30, 63–69 | DOI
[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, M., 1973 | MR
[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M, 1967 | MR
[9] Nakhushev A. Z., Uravneniya matematicheskoi biologii, Nauka, M., 1995
[10] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differ. uravn., 16:11 (1980), 1925–1935 | MR
[11] Tagiev R. K., Kasumov R. A., “Ob optimizatsionnoi postanovke koeffitsientnoi obratnoi zadachi dlya parabolicheskogo uravneniya s dopolnitelnym integralnym usloviem”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 2017, no. 45, 49–59
[12] Tagiev R. K., Magerramli Sh. I., “O razreshimosti nachalno-kraevoi zadachi dlya odnomernogo lineinogo parabolicheskogo uravneniya s integralnym granichnym usloviem”, Vestn. Bakin. un-ta. Ser. Fiz.-mat. nauki., 2019, no. 2, 17–26
[13] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR., 151:3 (1963), 501–504 | Zbl
[14] Iskenderov A. D., Tagiyev R. K., “Variational method solving the problem of identification of the coefficients of quasilinear parabolic problem”, Proc. 7 Int. Conf. “Inverse Problems: Modelling and Simulation” (Fethiye, Turkey, May 26–-31, 2014), Fethiye, Turkey, 2014, 31