Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 133-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an inverse control-type problem of determining the minor coefficient of a parabolic equation with an integral boundary-value condition and an additional integral condition. The well-posedness of the problem is examined. The Fréchet differentiability of the target functional based on the additional integral condition is proved and an expression for its gradient is found. A necessary condition for the optimality of control is established.
Keywords: inverse problem, integral boundary condition, correctness of the problem, necessary optimality condition.
Mots-clés : parabolic equation
@article{INTO_2023_224_a15,
     author = {R. K. Tagiyev and Sh. I. Maharramli},
     title = {Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {133--141},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/}
}
TY  - JOUR
AU  - R. K. Tagiyev
AU  - Sh. I. Maharramli
TI  - Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 133
EP  - 141
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/
LA  - ru
ID  - INTO_2023_224_a15
ER  - 
%0 Journal Article
%A R. K. Tagiyev
%A Sh. I. Maharramli
%T Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 133-141
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/
%G ru
%F INTO_2023_224_a15
R. K. Tagiyev; Sh. I. Maharramli. Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 133-141. http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/

[1] Alifanov O. A., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, M., 1988

[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, M., 1981 | MR

[3] Danilkina O. Yu., “Ob odnoi nelokalnoi zadache dlya uravneniya teploprovodnosti s integralnym usloviem”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 14:1 (2007), 5–9 | DOI | MR | Zbl

[4] Ivanchov N. I., “Kraevye zadachi dlya parabolicheskogo uravneniya s integralnymi usloviyami”, Differ. uravn., 40:4 (2004), 547–564 | MR | Zbl

[5] Iskenderov A. D., “O variatsionnykh postanovkakh mnogomernykh obratnykh zadach matematicheskoi fiziki”, Dokl. AN SSSR., 274:3 (1984), 531–533 | MR | Zbl

[6] Kozhanov A. I., “O razreshimosti kraevoi zadachi s nelokalnym granichnym usloviem dlya lineinykh parabolicheskikh uravnenii”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 2004, no. 30, 63–69 | DOI

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, M., 1973 | MR

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M, 1967 | MR

[9] Nakhushev A. Z., Uravneniya matematicheskoi biologii, Nauka, M., 1995

[10] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differ. uravn., 16:11 (1980), 1925–1935 | MR

[11] Tagiev R. K., Kasumov R. A., “Ob optimizatsionnoi postanovke koeffitsientnoi obratnoi zadachi dlya parabolicheskogo uravneniya s dopolnitelnym integralnym usloviem”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 2017, no. 45, 49–59

[12] Tagiev R. K., Magerramli Sh. I., “O razreshimosti nachalno-kraevoi zadachi dlya odnomernogo lineinogo parabolicheskogo uravneniya s integralnym granichnym usloviem”, Vestn. Bakin. un-ta. Ser. Fiz.-mat. nauki., 2019, no. 2, 17–26

[13] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR., 151:3 (1963), 501–504 | Zbl

[14] Iskenderov A. D., Tagiyev R. K., “Variational method solving the problem of identification of the coefficients of quasilinear parabolic problem”, Proc. 7 Int. Conf. “Inverse Problems: Modelling and Simulation” (Fethiye, Turkey, May 26–-31, 2014), Fethiye, Turkey, 2014, 31