Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a15, author = {R. K. Tagiyev and Sh. I. Maharramli}, title = {Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {133--141}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/} }
TY - JOUR AU - R. K. Tagiyev AU - Sh. I. Maharramli TI - Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 133 EP - 141 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/ LA - ru ID - INTO_2023_224_a15 ER -
%0 Journal Article %A R. K. Tagiyev %A Sh. I. Maharramli %T Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 133-141 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/ %G ru %F INTO_2023_224_a15
R. K. Tagiyev; Sh. I. Maharramli. Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 133-141. http://geodesic.mathdoc.fr/item/INTO_2023_224_a15/