Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 109-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find conditions of the existence of hypersurfaces in the $(n+1)$-dimensional Euclidean space $E^{n+1}$ whose main curvatures are proportional.
Mots-clés : $G$-structure
Keywords: differentiable manifold, structural function, thin fan, initial pair.
@article{INTO_2023_224_a12,
     author = {E. Yu. Kuzmina},
     title = {Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional {Euclidean} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a12/}
}
TY  - JOUR
AU  - E. Yu. Kuzmina
TI  - Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 109
EP  - 114
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a12/
LA  - ru
ID  - INTO_2023_224_a12
ER  - 
%0 Journal Article
%A E. Yu. Kuzmina
%T Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 109-114
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a12/
%G ru
%F INTO_2023_224_a12
E. Yu. Kuzmina. Hypersurfaces with proportional principal curvatures in $(n+1)$-dimensional Euclidean space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 109-114. http://geodesic.mathdoc.fr/item/INTO_2023_224_a12/

[1] Grushko P. Ya., “Morfizmy geometricheskikh struktur”, Mat. zametki., 22:5 (1977), 844–849 | MR

[2] Grushko P. Ya., “O probleme sopryazhennoi ekvivalentnosti Kartana”, Sib. mat. zh., 22:1 (1981), 68–80 | MR | Zbl

[3] Grushko P. Ya., “Sopryazhenno tranzitivnye struktury konechnogo tipa”, Izv. vuzov. Mat., 1981, no. 2, 24–29 | MR | Zbl

[4] Grushko P. Ya., “Sopryazhenno tranzitivnye struktury”, Sib. mat. zh., 24:1 (1983), 68–78 | MR | Zbl

[5] Grushko P. Ya., “Teorema Bonne dlya geometricheskikh struktur”, Mat. zametki., 29:2 (1981), 253–-264 | MR | Zbl

[6] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR

[7] Kuzmina E. Yu., “Giperpoverkhnosti s postoyannymi glavnymi kriviznami v evklidovom prostranstve $V^{N+1}$”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 214 (2022), 76–81 | DOI

[8] Kuzmina E. Yu., “Giperpoverkhnosti s proportsionalnymi glavnymi kriviznami v $(n+1)$-mernom evklidovom prostranstve”, Mat. 4 Mezhdunar. konf. «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (Irkutsk, 19-23 sentyabrya 2022), Izd-vo IGU, Irkutsk, 2022, 133–135

[9] Kuzmina E. Yu., Nekotorye primery par geometricheskikh struktur v klassicheskoi differentsialnoi geometrii, Dep. v VINITI No4752-84

[10] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Mosk. mat. o-va., 2 (1953), 275–382 | Zbl

[11] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR

[12] Bernard D., “Sur la geometrie differentielle des $G$-structures”, Ann. Inst. Fourier., 10 (1960), 153–273 | DOI | MR

[13] Chern S. S., “Pseudo-groupes continus infinis”, Colloq. Int. C.N.R.S., 10 (1953), 119–136 | MR

[14] Chern S. S, “The geometry of $G$-structures”, Bull. Am. Math. Soc., 72 (1966), 167–219 | MR | Zbl

[15] Guillemin V., “The integrability problem for $G$-structures”, Trans. Am. Math. Soc., 116 (1965), 544–560 | MR | Zbl

[16] Kuzmina E. Yu., “Representations of simple Lie algebras with vectors having a zero stationary subalgebra”, J. Phys. Conf. Ser., 1847: 012031 (2021)

[17] Monna G., “Integrabilite des structures de presque contact”, Compt. Rend. Acad. Sci., 291, 215–217 | MR | Zbl

[18] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan. Part 1. The transitive groups”, J. Anal. Math., 15 (1965), 1–114 | DOI | MR | Zbl