Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 10-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations are obtained. The criteria are obtained in the multiplicative form based on the transformation of difference schemes for numerical integration and are converted to the additive and integral forms. The formal restrictions for these criteria are constructed and their applicability conditions are indicated.
Keywords: Lyapunov stability, computer stability analysis, numerical modeling of stability.
@article{INTO_2023_224_a1,
     author = {S. G. Bulanov},
     title = {Necessary and sufficient criteria of {Lyapunov} stability for systems of ordinary differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--18},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a1/}
}
TY  - JOUR
AU  - S. G. Bulanov
TI  - Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 10
EP  - 18
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a1/
LA  - ru
ID  - INTO_2023_224_a1
ER  - 
%0 Journal Article
%A S. G. Bulanov
%T Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 10-18
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a1/
%G ru
%F INTO_2023_224_a1
S. G. Bulanov. Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 10-18. http://geodesic.mathdoc.fr/item/INTO_2023_224_a1/

[1] Aleksandrov A. Yu., Zhabko A. P., Kosov A. A., “Analiz ustoichivosti i stabilizatsiya nelineinykh sistem na osnove dekompozitsii”, Sib. mat. zh., 56:6 (2015), 1215–1233 | MR

[2] Bulanov S. G., “Analiz ustoichivosti sistem lineinykh differentsialnykh uravnenii na osnove preobrazovaniya raznostnykh skhem”, Mekhatronika, avtomatizatsiya, upravlenie., 20:9 (2019), 542–549

[3] Dzhanunts G. A., Romm Ya. E., “Variruemoe kusochno-interpolyatsionnoe reshenie zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii s iteratsionnym utochneniem”, Zh. vychisl. mat. mat. fiz., 57:10 (2017), 1641–1660 | DOI | MR | Zbl

[4] Melnikov G. I., Melnikov V. G., Dudarenko N. A., Talapov V. V., “Ustoichivost dvizheniya nelineinykh dinamicheskikh sistem pri postoyanno deistvuyuschikh vozmuscheniyakh”, Nauch.-tekhn. vestn. inform. tekhnol. mekh. opt., 19:2 (2019), 216–221 | MR

[5] Romm Ya. E, Bulanov S. G., “Chislennoe modelirovanie ustoichivosti po Lyapunovu”, Sovremennye naukoemkie tekhnologii., 2021, no. 7, 42–60 | DOI

[6] Romm Ya. E., “Kompyuterno-orientirovannyi analiz ustoichivosti po znakam komponentov resheniya differentsialnoi sistemy i ikh dvukh proizvodnykh”, Sovremennye naukoemkie tekhnologii., 2021, no. 9, 100–124 | DOI

[7] Romm Ya. E., “O neobkhodimykh i dostatochnykh usloviyakh ustoichivosti po Lyapunovu”, Sovremennye naukoemkie tekhnologii., 2022, no. 2, 92–109 | DOI

[8] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964 | MR

[9] Bulanov S. G., “Differential systems stability analysis based on matrix multiplicative criteria”, J. Phys. Conf. Ser., 2020, 012103 | DOI

[10] Hafstein S., “A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations”, Dynam. Syst., 20 (2005), 281–299 | DOI | MR | Zbl

[11] Zhaolu T., Chuanqing G., “A numerical algorithm for Lyapunov equations”, J. Appl. Math. Comput., 202:1 (2008), 45–53 | MR