Deforming Minkowski norms to Euclidean norms
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 107-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study deformations of Minkowski norms with piecewise smooth indicatrices determined by linearly independent $1$-forms and a piecewise smooth positive function. Such a deformation of the Euclidean norm generalizes the classical $(\alpha,\beta)$-norms by M. Matsumoto. We show that any Minkowski norm can be deformed into a Euclidean norm by a composition of such deformations.
Keywords: сonvex body, Minkowski norm.
@article{INTO_2023_223_a9,
     author = {V. Yu. Rovenskiǐ},
     title = {Deforming {Minkowski} norms to {Euclidean} norms},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {107--111},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/}
}
TY  - JOUR
AU  - V. Yu. Rovenskiǐ
TI  - Deforming Minkowski norms to Euclidean norms
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 107
EP  - 111
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/
LA  - ru
ID  - INTO_2023_223_a9
ER  - 
%0 Journal Article
%A V. Yu. Rovenskiǐ
%T Deforming Minkowski norms to Euclidean norms
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 107-111
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/
%G ru
%F INTO_2023_223_a9
V. Yu. Rovenskiǐ. Deforming Minkowski norms to Euclidean norms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 107-111. http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/

[1] Javaloyes M. A., Sánchez M., “On the definition and examples of Finsler metrics”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13:3 (2014), 813–858 | MR | Zbl

[2] Matsumoto M., “Theory of Finsler spaces with $(\alpha,\beta)$-metric”, Repts. Math. Phys., 31:1 (1992), 43–83 | DOI | MR | Zbl

[3] Rajabi T., Sadeghzadeh N., “A new class of Finsler metrics”, Mat. Vesnik., 73:1 (2021), 1–13 | MR | Zbl

[4] Rovenski V., “The new Minkowski norm and integral formulae for a manifold with a set of one-forms”, Balkan J. Geom. Appl., 23:1 (2018), 75–99 | MR | Zbl

[5] Rovenski V., Walczak P., “Deforming convex bodies in Minkowski geometry”, Int. J. Math., 33:1, 2250003 | DOI | MR | Zbl

[6] Shen Y.-B., Shen Z., Introduction to Modern Finsler Geometry, World Scientific, 2016 | MR | Zbl

[7] Shibata C., “On invariant tensors of $\beta$-changes of Finsler metrics”, J. Math. Kyoto Univ., 24 (1984), 163–188 | MR | Zbl