Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_223_a9, author = {V. Yu. Rovenskiǐ}, title = {Deforming {Minkowski} norms to {Euclidean} norms}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {107--111}, publisher = {mathdoc}, volume = {223}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/} }
TY - JOUR AU - V. Yu. Rovenskiǐ TI - Deforming Minkowski norms to Euclidean norms JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 107 EP - 111 VL - 223 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/ LA - ru ID - INTO_2023_223_a9 ER -
V. Yu. Rovenskiǐ. Deforming Minkowski norms to Euclidean norms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 107-111. http://geodesic.mathdoc.fr/item/INTO_2023_223_a9/
[1] Javaloyes M. A., Sánchez M., “On the definition and examples of Finsler metrics”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13:3 (2014), 813–858 | MR | Zbl
[2] Matsumoto M., “Theory of Finsler spaces with $(\alpha,\beta)$-metric”, Repts. Math. Phys., 31:1 (1992), 43–83 | DOI | MR | Zbl
[3] Rajabi T., Sadeghzadeh N., “A new class of Finsler metrics”, Mat. Vesnik., 73:1 (2021), 1–13 | MR | Zbl
[4] Rovenski V., “The new Minkowski norm and integral formulae for a manifold with a set of one-forms”, Balkan J. Geom. Appl., 23:1 (2018), 75–99 | MR | Zbl
[5] Rovenski V., Walczak P., “Deforming convex bodies in Minkowski geometry”, Int. J. Math., 33:1, 2250003 | DOI | MR | Zbl
[6] Shen Y.-B., Shen Z., Introduction to Modern Finsler Geometry, World Scientific, 2016 | MR | Zbl
[7] Shibata C., “On invariant tensors of $\beta$-changes of Finsler metrics”, J. Math. Kyoto Univ., 24 (1984), 163–188 | MR | Zbl