Well-posed boundary two-point problems for systems of partial differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine systems of partial differential equations that admit well-posed two-point problems in the Schwartz space, in particular, systems with Hermitian matrices, well-posed systems in the Petrovsky sense, and also systems with a one space variable.
Keywords: boundary-value problem, Schwartz space, resolution matrix.
Mots-clés : Fourier transform
@article{INTO_2023_223_a7,
     author = {{\CYRA}. {\CYRA}. Makarov and I. G. Nikolenko},
     title = {Well-posed boundary two-point problems for systems of partial differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a7/}
}
TY  - JOUR
AU  - А. А. Makarov
AU  - I. G. Nikolenko
TI  - Well-posed boundary two-point problems for systems of partial differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 79
EP  - 83
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a7/
LA  - ru
ID  - INTO_2023_223_a7
ER  - 
%0 Journal Article
%A А. А. Makarov
%A I. G. Nikolenko
%T Well-posed boundary two-point problems for systems of partial differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 79-83
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a7/
%G ru
%F INTO_2023_223_a7
А. А. Makarov; I. G. Nikolenko. Well-posed boundary two-point problems for systems of partial differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 79-83. http://geodesic.mathdoc.fr/item/INTO_2023_223_a7/

[1] Borok V. M., “Korrektno razreshimye kraevye zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii v chastnykh proizvodnykh”, Izv. AN SSSR. Ser. mat., 35:1 (1971), 185–201 | Zbl

[2] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Fizmatlit, M., 1994 | MR

[3] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, GIFML, M., 1958

[4] Makarov A. A., “Kriterii korrektnoi razreshimosti kraevoi zadachi v sloe dlya sistemy lineinykh uravnenii v svertkakh v topologicheskikh prostranstvakh”, Teoreticheskie i prikladnye voprosy differentsialnykh uravnenii i algebry / Sb. nauch. tr, Naukova dumka, Kiev, 1978, 178–180

[5] Makarov A. A., “O neobkhodimykh i dostatochnykh usloviyakh korrektnoi razreshimosti kraevoi zadachi v sloe dlya sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Differ. uravn., 17:2 (1981), 320–324 | MR | Zbl

[6] Fardigola L. V., “Korrektnye zadachi v sloe s differentsialnymi operatorami v kraevom uslovii”, Ukr. mat. zh., 44:8 (1992), 1083–1090 | MR | Zbl