Decomposable $n$-continuous mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 66-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of a decomposable $n$-continuous mapping, which is a generalization of the concept of a continuous mapping. We prove that decomposable $n$-continuous mappings preserve such topological invariants as the separability, the Lindelöf property, and the presence of a countable net. We also prove that a decomposable $n$-continuous mapping of a space with a countable base onto a compact Hausdorff space preserves the metrizability.
Keywords: continuity, Lindelöf property, separability, metrizability.
@article{INTO_2023_223_a5,
     author = {S. M. Komov},
     title = {Decomposable $n$-continuous mappings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {66--68},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a5/}
}
TY  - JOUR
AU  - S. M. Komov
TI  - Decomposable $n$-continuous mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 66
EP  - 68
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a5/
LA  - ru
ID  - INTO_2023_223_a5
ER  - 
%0 Journal Article
%A S. M. Komov
%T Decomposable $n$-continuous mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 66-68
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a5/
%G ru
%F INTO_2023_223_a5
S. M. Komov. Decomposable $n$-continuous mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 66-68. http://geodesic.mathdoc.fr/item/INTO_2023_223_a5/

[1] Arkhangelskii A. V., “Additsionnaya teorema dlya vesa mnozhestv, lezhaschikh v bikompaktakh”, Dokl. AN SSSR., 126:4 (1959), 239–241 | Zbl

[2] Urysohn P., “Über die Metrisation der kompakten topologischen Räume”, Math. Ann., 92 (1924), 275–293 | DOI | MR