Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_223_a4, author = {P. N. Klepikov}, title = {Four-dimensional locally homogeneous {pseudo-Riemannian} manifolds with a~nontrivial isotropy subgroup and an isotropic {Schouten--Weil} tensor}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {50--65}, publisher = {mathdoc}, volume = {223}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/} }
TY - JOUR AU - P. N. Klepikov TI - Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 50 EP - 65 VL - 223 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/ LA - ru ID - INTO_2023_223_a4 ER -
%0 Journal Article %A P. N. Klepikov %T Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 50-65 %V 223 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/ %G ru %F INTO_2023_223_a4
P. N. Klepikov. Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 50-65. http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/
[1] Voronov D. S., Rodionov E. D., “Levoinvariantnye rimanovy metriki na chetyrekhmernykh neunimodulyarnykh gruppakh Li s tenzorom Veilya s nulevoi divergentsiei”, Dokl. RAN., 432:3 (2010), 301–-303 | Zbl
[2] Gladunova O. P., “Primenenie matematicheskikh paketov k vychisleniyu invariantnykh tenzornykh polei na trekhmernykh gruppakh Li s levoinvariantnoi (psevdo)rimanovoi metrikoi”, Vestn. Altaisk. gos. ped. un-ta., 6:2 (2006), 111–115
[3] Gladunova O. P., Oskorbin D. N., “Primenenie paketov simvolnykh vychislenii k issledovaniyu spektra operatora krivizny na metricheskikh gruppakh Li”, Izv. Altaisk. gos. un-ta., 2013, no. 1 (77), 19–23 | MR
[4] Gladunova O. P., Slavskii V. V., “Levoinvariantnye rimanovy metriki na chetyrekhmernykh unimodulyarnykh gruppakh Li s tenzorom Veilya s nulevoi divergentsiei”, Dokl. RAN., 2010, no. 431, 736–-738 | MR | Zbl
[5] Gladunova O. P., Slavskii V. V., “O garmonichnosti tenzora Veilya levoinvariantnykh rimanovykh metrik na chetyrekhmernykh unimodulyarnykh gruppakh Li”, Mat. tr., 14:1 (2011), 50–69 | MR | Zbl
[6] Klepikov P. N., “Chetyrekhmernye metricheskie gruppy Li s nulevym tenzorom Skhoutena"– Veilya”, Sib. elektron. mat. izv., 16 (2019), 271–330 | MR | Zbl
[7] Klepikov P. N., Rodionov E. D., “Primenenie paketov simvolnykh vychislenii k issledovaniyu algebraicheskikh solitonov Richchi na odnorodnykh (psevdo)rimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta., 2017, no. 4 (96), 108–111
[8] Klepikova S. V., “Izotropnyi tenzor Veilya na chetyrekhmernykh lokalno odnorodnykh psevdorimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta., 2019, no. 1 (105), 80–83
[9] Klepikova S. V., Khromova O. P., “Lokalno odnorodnye psevdorimanovy mnogoobraziya razmernosti $4$ s izotropnym tenzorom Veilya”, Izv. Altaisk. gos. un-ta., 2018, no. 1 (99), 99–102
[10] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Lokalno konformno odnorodnye psevdorimanovy prostranstva”, Mat. tr., 9:1 (2006), 130–168 | MR | Zbl
[11] Khromova O. P., “Primenenie paketov simvolnykh vychislenii k issledovaniyu operatora odnomernoi krivizny na nereduktivnykh odnorodnykh psevdorimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta., 2017, no. 1 (93), 140–143
[12] Khromova O. P., Klepikov P. N., Klepikova S. V., Rodionov E. D., “On the Schouten–Weyl tensor of 3-dimensional metric Lie groups”, Tr. semin. geom. mat. model., 3 (2017), 21–29
[13] Besse A., Einstein Manifolds, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | Zbl
[14] Calvaruso G., Zaeim A., “Conformally flat homogeneous pseudo-Riemannian four-manifolds”, Tôhoku Math. J., 66 (2014), 31–54 | DOI | MR | Zbl
[15] Calvaruso G., Zaeim A., “Four-dimensional Lorentzian Lie groups”, Differ. Geom. Appl., 31 (2013), 496–509 | DOI | MR | Zbl
[16] Calvaruso G., Zaeim A., “Neutral metrics on four-dimensional Lie groups”, J. Lie Theory., 25 (2015), 1023–1044 | MR | Zbl
[17] Gray A., “Einstein-like manifolds which are not Einstein”, Geom. Dedicata., 7 (1978), 259–280 | DOI | MR | Zbl
[18] Komrakov B. B., “Einstein–Maxwell equation on four-dimensional homogeneous spaces”, Lobachevskii J. Math., 8 (2001), 33–165 | MR | Zbl
[19] Rodionov E. D., Slavskii V. V., “Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces”, Comment. Math. Univ. Carol., 43:2 (2002), 271–282 | MR | Zbl
[20] Zaeim A., Haji-Badali A., “Einstein-like pseudo-Riemannian homogeneous manifolds of dimension four”, Mediter. J. Math., 13:5 (2016), 3455–3468 | DOI | MR | Zbl