Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 50-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The isotropic Schouten–Weyl tensor was previously studied in the case of three-dimensional Lie groups with a left-invariant Lorentzian metric. In the case of locally homogeneous pseudo-Riemannian spaces with a nontrivial isotropy subgroup, manifolds with an isotropic Weyl tensor were classified. In this paper, we obtain a classification of four-dimensional, locally homogeneous pseudo-Riemannian manifolds with an isotropic Schouten—Weyl tensor. Some results on the curvature tensors of similar manifolds are obtained.
Keywords: locally homogeneous space, isotropic Schouten–Weyl tensor, Lie algebra.
@article{INTO_2023_223_a4,
     author = {P. N. Klepikov},
     title = {Four-dimensional locally homogeneous {pseudo-Riemannian} manifolds with a~nontrivial isotropy subgroup and an isotropic {Schouten--Weil} tensor},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--65},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/}
}
TY  - JOUR
AU  - P. N. Klepikov
TI  - Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 50
EP  - 65
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/
LA  - ru
ID  - INTO_2023_223_a4
ER  - 
%0 Journal Article
%A P. N. Klepikov
%T Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 50-65
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/
%G ru
%F INTO_2023_223_a4
P. N. Klepikov. Four-dimensional locally homogeneous pseudo-Riemannian manifolds with a~nontrivial isotropy subgroup and an isotropic Schouten--Weil tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 50-65. http://geodesic.mathdoc.fr/item/INTO_2023_223_a4/

[1] Voronov D. S., Rodionov E. D., “Levoinvariantnye rimanovy metriki na chetyrekhmernykh neunimodulyarnykh gruppakh Li s tenzorom Veilya s nulevoi divergentsiei”, Dokl. RAN., 432:3 (2010), 301–-303 | Zbl

[2] Gladunova O. P., “Primenenie matematicheskikh paketov k vychisleniyu invariantnykh tenzornykh polei na trekhmernykh gruppakh Li s levoinvariantnoi (psevdo)rimanovoi metrikoi”, Vestn. Altaisk. gos. ped. un-ta., 6:2 (2006), 111–115

[3] Gladunova O. P., Oskorbin D. N., “Primenenie paketov simvolnykh vychislenii k issledovaniyu spektra operatora krivizny na metricheskikh gruppakh Li”, Izv. Altaisk. gos. un-ta., 2013, no. 1 (77), 19–23 | MR

[4] Gladunova O. P., Slavskii V. V., “Levoinvariantnye rimanovy metriki na chetyrekhmernykh unimodulyarnykh gruppakh Li s tenzorom Veilya s nulevoi divergentsiei”, Dokl. RAN., 2010, no. 431, 736–-738 | MR | Zbl

[5] Gladunova O. P., Slavskii V. V., “O garmonichnosti tenzora Veilya levoinvariantnykh rimanovykh metrik na chetyrekhmernykh unimodulyarnykh gruppakh Li”, Mat. tr., 14:1 (2011), 50–69 | MR | Zbl

[6] Klepikov P. N., “Chetyrekhmernye metricheskie gruppy Li s nulevym tenzorom Skhoutena"– Veilya”, Sib. elektron. mat. izv., 16 (2019), 271–330 | MR | Zbl

[7] Klepikov P. N., Rodionov E. D., “Primenenie paketov simvolnykh vychislenii k issledovaniyu algebraicheskikh solitonov Richchi na odnorodnykh (psevdo)rimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta., 2017, no. 4 (96), 108–111

[8] Klepikova S. V., “Izotropnyi tenzor Veilya na chetyrekhmernykh lokalno odnorodnykh psevdorimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta., 2019, no. 1 (105), 80–83

[9] Klepikova S. V., Khromova O. P., “Lokalno odnorodnye psevdorimanovy mnogoobraziya razmernosti $4$ s izotropnym tenzorom Veilya”, Izv. Altaisk. gos. un-ta., 2018, no. 1 (99), 99–102

[10] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Lokalno konformno odnorodnye psevdorimanovy prostranstva”, Mat. tr., 9:1 (2006), 130–168 | MR | Zbl

[11] Khromova O. P., “Primenenie paketov simvolnykh vychislenii k issledovaniyu operatora odnomernoi krivizny na nereduktivnykh odnorodnykh psevdorimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta., 2017, no. 1 (93), 140–143

[12] Khromova O. P., Klepikov P. N., Klepikova S. V., Rodionov E. D., “On the Schouten–Weyl tensor of 3-dimensional metric Lie groups”, Tr. semin. geom. mat. model., 3 (2017), 21–29

[13] Besse A., Einstein Manifolds, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | Zbl

[14] Calvaruso G., Zaeim A., “Conformally flat homogeneous pseudo-Riemannian four-manifolds”, Tôhoku Math. J., 66 (2014), 31–54 | DOI | MR | Zbl

[15] Calvaruso G., Zaeim A., “Four-dimensional Lorentzian Lie groups”, Differ. Geom. Appl., 31 (2013), 496–509 | DOI | MR | Zbl

[16] Calvaruso G., Zaeim A., “Neutral metrics on four-dimensional Lie groups”, J. Lie Theory., 25 (2015), 1023–1044 | MR | Zbl

[17] Gray A., “Einstein-like manifolds which are not Einstein”, Geom. Dedicata., 7 (1978), 259–280 | DOI | MR | Zbl

[18] Komrakov B. B., “Einstein–Maxwell equation on four-dimensional homogeneous spaces”, Lobachevskii J. Math., 8 (2001), 33–165 | MR | Zbl

[19] Rodionov E. D., Slavskii V. V., “Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces”, Comment. Math. Univ. Carol., 43:2 (2002), 271–282 | MR | Zbl

[20] Zaeim A., Haji-Badali A., “Einstein-like pseudo-Riemannian homogeneous manifolds of dimension four”, Mediter. J. Math., 13:5 (2016), 3455–3468 | DOI | MR | Zbl