Universality property for spaces that continuously contain topological groups and their mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 36-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, (separable metric) spaces continuously containing topological groups and mappings of such spaces are considered. It is proved that in some classes of such spaces and classes of mappings associated with saturated classes of spaces there exist regular (and isometrically) universal elements.
Keywords: topological group, separable metric space, isometry, regular mapping, saturated class of spaces, universal space, universal mapping.
@article{INTO_2023_223_a3,
     author = {S. D. Iliadis and Yu. V. Sadovnichii},
     title = {Universality property for spaces that continuously contain topological groups and their mappings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {36--49},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a3/}
}
TY  - JOUR
AU  - S. D. Iliadis
AU  - Yu. V. Sadovnichii
TI  - Universality property for spaces that continuously contain topological groups and their mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 36
EP  - 49
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a3/
LA  - ru
ID  - INTO_2023_223_a3
ER  - 
%0 Journal Article
%A S. D. Iliadis
%A Yu. V. Sadovnichii
%T Universality property for spaces that continuously contain topological groups and their mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 36-49
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a3/
%G ru
%F INTO_2023_223_a3
S. D. Iliadis; Yu. V. Sadovnichii. Universality property for spaces that continuously contain topological groups and their mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 36-49. http://geodesic.mathdoc.fr/item/INTO_2023_223_a3/

[1] Arkhangelskii A. V., Fedorchuk V. V., “Osnovnye ponyatiya i konstruktsii v obschei topologii”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 17 (1988), 5–110

[2] Iliadis S., “O vlozheniyakh topologicheskikh grupp”, Fundam. prikl. mat., 20:2 (2015), 105–112.

[3] Smirnov Yu., “Ob universalnykh prostranstvakh dlya nekotorykh klassov beskonechnomernykh prostranstv”, Izv. AN SSSR. Ser. mat., 23 (1959), 185–196 | Zbl

[4] Uspenskii V. V., “Ob universalnoi topologicheskoi gruppe schetnogo vesa”, Funkts. anal. prilozh., 20 (1986), 86–87 | MR | Zbl

[5] Shkarin S. A., “Ob universalnykh abelevykh topologicheskikh grupp”, Mat. sb., 190:7 (1999), 127–144 | DOI | MR | Zbl

[6] Banach S., Theorie operations lineaires, Warsaw, 1932 | MR | Zbl

[7] Ben Yaacov I., “The linear isometry group of the Gurarij space is universal”, Proc. Math. Soc., 142:7 (2014), 2459–2467 | DOI | MR | Zbl

[8] Dube T., Iliadis S. van Mill J., Naidoo I., “Universal frames”, Topology Appl., 160:18 (2013), 2454–2464 | DOI | MR | Zbl

[9] Georgiou D. N., Iliadis S. D., Megaritis A. C., “On base dimension-like functions of the type Ind”, Topology Appl., 160:18, 2482–2494 | DOI | MR | Zbl

[10] Georgiou D., Iliadis S., Megaritis A., Sereti F., “Universality property and dimension for frames”, Order., 37:3 (2019), 427–444 | DOI | MR

[11] Georgiou D. N., Iliadis S. D., Megaritis A. C., Sereti F., “Small inductive dimension and universality on frames”, Algebra Univ., 80:2 (2019), 21–51 | DOI | MR

[12] Gevorgyan P. S., Iliadis S. D., Sadovnichy Yu V., “Universality on frames”, Topology Appl., 220 (2017), 173–188 | DOI | MR | Zbl

[13] Iliadis S. D., “A construction of containing spaces”, Topology Appl., 107 (2000), 97–116 | DOI | MR | Zbl

[14] Iliadis S. D., “Mappings and universality”, Topology Appl., 137:1-3 (2004), 175–186 | DOI | MR | Zbl

[15] Iliadis S. D., Universal Spaces and Mappings, Elsevier, 2005 | MR | Zbl

[16] Iliadis S. D., “On isometrically universal spaces, mappings, and actions of groups”, Topology Appl., 155:14 (2008), 1502–1515 | DOI | MR | Zbl

[17] Iliadis S. D., “Universal elements in some classes of mappings and classes of $G$-spaces”, Topology Appl., 156:1 (2008), 76–82 | DOI | MR | Zbl

[18] Iliadis S. D., “On isometric embeddings of separable metric spaces”, Topology Appl., 179 (2015), 91–98 | DOI | MR | Zbl

[19] Iliadis S. D., “On spaces continuously containing topological groups”, Topology Appl., 272 (2020), 107072 | DOI | MR | Zbl

[20] Iliadis S. D., “On actions of spaces continuously containing topological groups”, Topology Appl., 275 (2020), 107035 | DOI | MR | Zbl

[21] Iliadis S. D., Sadovnichy Yu. V., “Universality on spaces continuously containing topological groups”, Filomat., 35:12 (2021), 4087–-4094 | DOI | MR

[22] Katetov M., “On universal metric spaces”, Proc. 6th Topological Symp. “General Topology and Its Relations to Modern Analysis and Algebra” (Prague, 1986), ed. Frolik Z., Heldermann Verlag, Berlin, 1988, 323–330 | MR

[23] Nagata J., “On the countable sum of zero-dimensional metric spaces”, Fund. Math., 48:1 (1959), 1–14 | DOI | MR

[24] Nobeling G., “Über eine $n$-dimensionale Universalmenge im ${\mathbb R}^{2n+1}$”, Math. Ann., 104 (1930), 71–80 | DOI | MR

[25] R. Pol, “Countable dimensional universal sets”, Trans. Am. Math. Soc., 297 (1986), 255–268 | MR | Zbl

[26] Urysohn P. S., “Sur un espace metrique universel”, Bull. Sci. Math., 51 (1927), 43–64

[27] Urysohn P. S., “Der Hilbertsche Raum als Urbild der Metrishen Raume”, Math. Ann., 92 (1924), 302–304 | DOI | MR

[28] Uspenski V. V., “On the group of isometries of the Urysohn universal metric space”, Comment. Math. Univ. Carol., 31:1 (1990), 181–182 | MR | Zbl

[29] Wenner B. R., “A universal separable metric locally finite-dimensional space”, Fund. Math., 80 (1973), 283–286 | DOI | MR | Zbl