On the Einstein metrics of three-dimensional Lie groups with a semisymmetric connection
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Einstein equations on three-dimensional unimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection.
Keywords: Einstein metric, left-invariant Lorentzian metric, semisymmetric connection.
Mots-clés : Lie group
@article{INTO_2023_222_a5,
     author = {A. A. Pavlova and O. P. Khromova},
     title = {On the {Einstein} metrics of three-dimensional {Lie} groups with a semisymmetric connection},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {64--68},
     publisher = {mathdoc},
     volume = {222},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_222_a5/}
}
TY  - JOUR
AU  - A. A. Pavlova
AU  - O. P. Khromova
TI  - On the Einstein metrics of three-dimensional Lie groups with a semisymmetric connection
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 64
EP  - 68
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_222_a5/
LA  - ru
ID  - INTO_2023_222_a5
ER  - 
%0 Journal Article
%A A. A. Pavlova
%A O. P. Khromova
%T On the Einstein metrics of three-dimensional Lie groups with a semisymmetric connection
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 64-68
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_222_a5/
%G ru
%F INTO_2023_222_a5
A. A. Pavlova; O. P. Khromova. On the Einstein metrics of three-dimensional Lie groups with a semisymmetric connection. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 64-68. http://geodesic.mathdoc.fr/item/INTO_2023_222_a5/

[1] Klepikov P. N., Rodionov E. D., Khromova O. P., “Uravnenie Einshteina na trekhmernykh lokalno odnorodnykh (psevdo)rimanovykh prostranstvakh s vektornym krucheniem”, Mat. zametki SVFU., 28:4 (2021), 30–47

[2] Klepikov P. N., Rodionov E. D., Khromova O. P., “Uravneniya Einshteina na trekhmernykh metricheskikh gruppakh Li s vektornym krucheniem”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 181 (2020), 41–53

[3] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Lokalno konformno odnorodnye psevdorimanovy prostranstva”, Mat. tr., 9:1 (2006), 130–168

[4] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Differ. Geom. Appl., 46 (2016), 130–147

[5] Agricola I., Thier C., “The geodesics of metric connections with vectorial torsion”, Ann. Glob. Anal. Geom., 26 (2004), 321–332

[6] Barua B., Ray A. Kr., “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740

[7] Calvaruso G., “Homogeneous structures on three-dimensional Lorentzian manifolds”, J. Geom. Phys., 57 (2007), 1279–1291

[8] Cartan E., “Sur les variétés àconnexion affine et la théorie de la relativitégénéralisée (deuxième partie)”, Ann. Ecole Norm. Sup., 42 (1925), 17–88

[9] Cordero L. A., Parker P. E., “Left-invariant Lorentzian metrics on 3-dimensional Lie groups”, Rend. Mat., 17 (1997), 129–155

[10] De U. C., De B. K., “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanbul Univ. Fen. Fak. Mat. Der., 54 (1995), 111–117

[11] Klemm D. S., Ravera L., “Einstein manifolds with torsion and nonmetricity”, Phys. Rev. D., 101 (2020), 044011

[12] Maralbhavi Y. B., Muniraja G., “Semi-symmetric metric connections, Einstein manifolds and projective curvature tensor”, Int. J. Contemp. Math. Sci., 5:20 (2010), 991–999

[13] Muniraja G., “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3:25 (2008), 1223–1232

[14] Murathan C., Özgür C., “Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions”, Proc. Estonian Acad. Sci., 57:4 (2008), 210–216

[15] Yano K., “On semi-symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586

[16] Yilmaz H. B., Zengin F. Ö., Uysal. S. A., “On a semi-symmetric metric connection with a special condition on a Riemannian manifold”, Eur. J. Pure Appl. Math., 4:2 (2011), 152–161

[17] Zengin F. Ö., Demirbağ S. A., Uysal S. A., Yilmaz H. B., “Some vector fields on a Riemannian manifold with semi-symmetric metric connection”, Bull. Iran. Math. Soc., 38:2 (2012), 479–490