Geometry of almost $3$-quasi-Sasakian manifolds of the second kind
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define the structure of an almost $3$-quasi-Sasakian manifold of the second kind and prove that on a zero-curvature distribution of an almost quasi-Sasakian manifold, the structure of an almost $3$-quasi-Sasakian manifold is determined by a connection with skew-symmetric torsion.
Keywords: sub-Riemannian manifold of contact type, almost contact metric manifold, interior connection, almost quasi-Sasakian manifold, skew-symmetric connection, almost $3$-quasi-Sasakian structure.
@article{INTO_2023_222_a0,
     author = {S. V. Galaev},
     title = {Geometry of almost $3${-quasi-Sasakian} manifolds of the second kind},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {222},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_222_a0/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Geometry of almost $3$-quasi-Sasakian manifolds of the second kind
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 9
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_222_a0/
LA  - ru
ID  - INTO_2023_222_a0
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Geometry of almost $3$-quasi-Sasakian manifolds of the second kind
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-9
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_222_a0/
%G ru
%F INTO_2023_222_a0
S. V. Galaev. Geometry of almost $3$-quasi-Sasakian manifolds of the second kind. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2023_222_a0/

[1] Bukusheva A. V., Galaev S. V., “Geometriya pochti kontaktnykh giperkelerovykh mnogoobrazii”, Differ. geom. mnogoobr. figur., 2017, no. 48, 32–41

[2] Bukusheva A. V., Galaev S. V., “Svyaznosti nad raspredeleniem i geodezicheskie pulverizatsii”, Izv. vuzov. Mat., 2013, no. 4, 10–18

[3] Galaev S. V., “Dopustimye giperkompleksnye struktury na raspredeleniyakh sasakievykh mnogoobrazii”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 16:3 (2016), 263–272

[4] Galaev S. V., “Klassifikatsiya prodolzhennykh bi-metricheskikh struktur na raspredeleniyakh nenulevoi krivizny subrimanovykh mnogoobrazii”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 18:3 (2018), 263–273

[5] Galaev S. V., “Pochti kontaktnye kelerovy mnogoobraziya postoyannoi golomorfnoi sektsionnoi krivizny”, Izv. vuzov. Mat., 2014, no. 8, 42–52

[6] Agricola I., Ferreira A. C., “Einstein manifolds with skew torsion”, Q. J. Math., 65:3 (2014), 717–741

[7] Agricola I., Becker-Bender J., Kim H., “Twistorial eigenvalue estimates for generalized Dirac operators with torsion”, Adv. Math., 243 (2013), 296–329

[8] Agricola I., Friedrich T., “3-Sasakian manifolds in dimension seven, their spinors and $G_2$-structures”, J. Geom. Phys., 60:2 (2010), 326–332

[9] Agricola I., Ferreira A. C., “Einstein manifolds with skew torsion”, Quart. J. Math., 65 (2014), 717–741

[10] Attarchi H., “3-Kenmotsu manifolds”, Lobachevskii J. Math., 41:3 (2020), 320–325

[11] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution”, Bull. Transilvania Univ. Brasov. Ser. III. Math. Inform. Phys., 4 (53):2 (2011), 13–22

[12] Cappelletti-Montano B., Nicola A., “3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem”, J. Geom. Phys., 12 (2007), 2509–2520

[13] Cappelletti-Montano B., Nicola A., Dileo G., “3-quasi-Sasakian manifolds”, Ann. Global Anal. Geom., 33:4 (2008), 397–409

[14] Cappelletti-Montano B., Nicola A., Dileo G., “The geometry of 3-quasi-Sasakian manifolds”, Int. J. Math., 20:9 (2000), 1081–1105

[15] Friedrich T., Ivanov S., “Parallel spinors and connections with skew-symmetric torsion in string theory”, Asian J. Math., 6 (2002), 303–336

[16] Galaev S. V., “Admissible hyper-complex pseudo-Hermitian structures”, Lobachevskii J. Math., 39:1 (2018), 71–76

[17] Galaev S. V., “Intrinsic geometry of almost contact kahlerian manifolds”, Acta Math. Acad. Paedagog. Nyiregyhaziensis., 31:1 (2015), 35–46

[18] Hashimoto S., “On differentiable manifold with almost quaternion contact structure”, Tensor (New Ser.)., 15 (1964), 258–268

[19] Kashiwada T., “A note on a Riemannian space with Sasakian 3-structure”, Natl. Sci. Rep. Ochanomizu Univ., 22 (1971), 1-2

[20] Kuo Y. Y., “On almost contact 3-structure”, Tôhoku Math. J., 22 (1970), 325–332

[21] Sato I., “On a structure similar to Sasakian 3-structure”, Tôhoku Math. J., 25:4 (1973), 405–415