On noncomposite $RR$-polyhedra of the second type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 104-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the existence of one class of closed convex polyhedra in $E^3$—the so-called noncomposite $RR$-polyhedra—is examined. The existence test consists of finding an equation which implies the existence of a polyhedron and allows one to find the angle of rhombuses at a rhombic vertex.
Keywords: $RR$-polyhedron of the second type, vertex star, noncomposite $RR$-polyhedron.
Mots-clés : rhombic vertex
@article{INTO_2023_221_a9,
     author = {V. I. Subbotin},
     title = {On noncomposite $RR$-polyhedra of the second type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--114},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/}
}
TY  - JOUR
AU  - V. I. Subbotin
TI  - On noncomposite $RR$-polyhedra of the second type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 104
EP  - 114
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/
LA  - ru
ID  - INTO_2023_221_a9
ER  - 
%0 Journal Article
%A V. I. Subbotin
%T On noncomposite $RR$-polyhedra of the second type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 104-114
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/
%G ru
%F INTO_2023_221_a9
V. I. Subbotin. On noncomposite $RR$-polyhedra of the second type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 104-114. http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/

[1] Deza M., Grishukhin V. P., Shtogrin A. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007

[2] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauch. semin. LOMI., 2 (1967), 1–220

[3] Subbotin V. I., “Ob odnom klasse silno simmetrichnykh mnogogrannikov”, Chebyshev. sb., 2016, no. 4, 132–140

[4] Subbotin V. I., “O dvukh klassakh mnogogrannikov s rombicheskimi vershinami”, Zap. nauch. semin. POMI., 476 (2018), 153–164

[5] Subbotin V. I., “O polnote spiska vypuklykh $RR$-mnogogrannikov”, Chebyshev. sb., 21:1 (2020), 297–309

[6] Subbotin V. I., “Suschestvovanie i polnota perechisleniya trekhmernykh $RR$-mnogogrannikov”, Geometricheskie metody v teorii upravleniya i matematicheskoi fizike, Izd-vo Ryazan. gos. un-ta, Ryazan, 2021, 15

[7] Subbotin V. I., “O suschestvovanii $RR$-mnogogrannikov, svyazannykh s ikosaedrom”, Chebyshev. sb., 22:4 (2021), 253–264

[8] Subbotin V. I., “O sostavnykh $RR$-mnogogrannikakh vtorogo tipa”, Vladikavkaz. mat. zh., 24:1 (2022), 100–108

[9] Berman M., “Regular-faced convex polyhedra”, J. Franklin Inst., 291:5 (1971), 329–352

[10] Bokowski J., Wills J. M., “Regular polyhedra with hidden symmetries”, Math. Intel., 10 (1988), 27–32

[11] Coxeter H. S. M., Regular Polytopes, Dover, New York, 1973

[12] Coxeter H. S. M., “Regular and semi-regular polytopes, III”, Math. Z., 200:21 (1988), 3–45

[13] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1999

[14] Grunbaum B., “Regular polyhedra: Old and new”, Aequat. Math., 16:1-2 (1977), 1–20

[15] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200

[16] McMullen P., Geometric Regular Polytopes, Cambridge Univ. Press, Cambridge, 2020

[17] Schulte E., “Symmetry of polytopes and polyhedra”, Handbook of Discrete and Computational Geometry, eds. Goodman J. E., O'Rourke J., Toth C. D., CRC Press, 2017

[18] Schulte E., Wills J. M., “On Coxeter's regular skew polyhedra”, Discr. Math., 60 (1986), 253–262

[19] Tupelo-Schneck R., “Convex regular-faced polyhedra with conditional edges”, http://tupelo-schneck.org/polyhedra/