Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_221_a9, author = {V. I. Subbotin}, title = {On noncomposite $RR$-polyhedra of the second type}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {104--114}, publisher = {mathdoc}, volume = {221}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/} }
TY - JOUR AU - V. I. Subbotin TI - On noncomposite $RR$-polyhedra of the second type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 104 EP - 114 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/ LA - ru ID - INTO_2023_221_a9 ER -
V. I. Subbotin. On noncomposite $RR$-polyhedra of the second type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 104-114. http://geodesic.mathdoc.fr/item/INTO_2023_221_a9/
[1] Deza M., Grishukhin V. P., Shtogrin A. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007
[2] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauch. semin. LOMI., 2 (1967), 1–220
[3] Subbotin V. I., “Ob odnom klasse silno simmetrichnykh mnogogrannikov”, Chebyshev. sb., 2016, no. 4, 132–140
[4] Subbotin V. I., “O dvukh klassakh mnogogrannikov s rombicheskimi vershinami”, Zap. nauch. semin. POMI., 476 (2018), 153–164
[5] Subbotin V. I., “O polnote spiska vypuklykh $RR$-mnogogrannikov”, Chebyshev. sb., 21:1 (2020), 297–309
[6] Subbotin V. I., “Suschestvovanie i polnota perechisleniya trekhmernykh $RR$-mnogogrannikov”, Geometricheskie metody v teorii upravleniya i matematicheskoi fizike, Izd-vo Ryazan. gos. un-ta, Ryazan, 2021, 15
[7] Subbotin V. I., “O suschestvovanii $RR$-mnogogrannikov, svyazannykh s ikosaedrom”, Chebyshev. sb., 22:4 (2021), 253–264
[8] Subbotin V. I., “O sostavnykh $RR$-mnogogrannikakh vtorogo tipa”, Vladikavkaz. mat. zh., 24:1 (2022), 100–108
[9] Berman M., “Regular-faced convex polyhedra”, J. Franklin Inst., 291:5 (1971), 329–352
[10] Bokowski J., Wills J. M., “Regular polyhedra with hidden symmetries”, Math. Intel., 10 (1988), 27–32
[11] Coxeter H. S. M., Regular Polytopes, Dover, New York, 1973
[12] Coxeter H. S. M., “Regular and semi-regular polytopes, III”, Math. Z., 200:21 (1988), 3–45
[13] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1999
[14] Grunbaum B., “Regular polyhedra: Old and new”, Aequat. Math., 16:1-2 (1977), 1–20
[15] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200
[16] McMullen P., Geometric Regular Polytopes, Cambridge Univ. Press, Cambridge, 2020
[17] Schulte E., “Symmetry of polytopes and polyhedra”, Handbook of Discrete and Computational Geometry, eds. Goodman J. E., O'Rourke J., Toth C. D., CRC Press, 2017
[18] Schulte E., Wills J. M., “On Coxeter's regular skew polyhedra”, Discr. Math., 60 (1986), 253–262
[19] Tupelo-Schneck R., “Convex regular-faced polyhedra with conditional edges”, http://tupelo-schneck.org/polyhedra/