Almost geodesic curves and~geodesic mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 93-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present some results obtained for almost geodesic curves and geodesic mappings and transformations. We prove that a mapping under which all almost geodesic curves pass to almost geodesic curves is geodesic. Under geodesic mappings and transformations, almost geodesic curves are preserved.
Keywords: almost geodesic curve, geodesic mapping
Mots-clés : projective transformation.
@article{INTO_2023_221_a8,
     author = {L. Ryparova and J. Mike\v{s} and P. Pe\v{s}ka},
     title = {Almost geodesic curves and~geodesic mappings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a8/}
}
TY  - JOUR
AU  - L. Ryparova
AU  - J. Mikeš
AU  - P. Peška
TI  - Almost geodesic curves and~geodesic mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 93
EP  - 103
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a8/
LA  - ru
ID  - INTO_2023_221_a8
ER  - 
%0 Journal Article
%A L. Ryparova
%A J. Mikeš
%A P. Peška
%T Almost geodesic curves and~geodesic mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 93-103
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a8/
%G ru
%F INTO_2023_221_a8
L. Ryparova; J. Mikeš; P. Peška. Almost geodesic curves and~geodesic mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 93-103. http://geodesic.mathdoc.fr/item/INTO_2023_221_a8/

[1] Abbassi M. T. K., Mikesh I., Vanzhurova A., Bezhan K. L., Belova O. O., “Ushel iz zhizni professor Oldrzhikh Kovalskii”, Differ. geom. mnogoobr. figur., 52 (2021), 5–16

[2] Aminova A. V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003

[3] Berezovskii V. E., Guseva N. I., Mikesh I., “O chastnom sluchae pochti geodezicheskikh otobrazhenii pervogo tipa prostranstv affinnoi svyaznosti, pri kotorom sokhranyaetsya nekotoryi tenzor”, Mat. zametki., 98:3 (2015), 463–466

[4] Berezovskii V. E., Guseva N. I., Mikesh I., “Geodezicheskie otobrazheniya ekviaffinnykh i Richchi-simmetricheskikh prostranstv”, Mat. zametki., 110:2 (2021), 309–312

[5] Berezovskii V. E., Mikesh I., “Pochti geodezicheskie otobrazheniya tipa $\pi_1$ na obobschenno richchi-simmetricheskie prostranstva”, Uch. zap. Kazan. gos. un-ta. Ser. Fiz.-mat. nauki., 151:4 (2009), 9–14

[6] Berezovskii V. E., Mikesh I., “O kanonicheskikh pochti geodezicheskikh otobrazheniyakh pervogo tipa prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 2014, no. 2, 3–8

[7] Berezovskii V. E., Mikesh I., Khuda G., Chepurnaya E. E., “Kanonicheskie pochti geodezicheskie otobrazheniya, sokhranyayuschie tenzor proektivnoi krivizny”, Izv. vuzov. Mat., 2017, no. 6, 3–8

[8] Vavrzhikova Kh., Mikesh I., Pokorna O., Starko G., “Ob osnovnykh uravneniyakh pochti geodezicheskikh otobrazhenii $\pi_2(e)$”, Izv. vuzov. Mat., 2007, no. 1, 10–15

[9] Vedenyapin D. V., “Ob $(n{-}2)$-proektivnom prostranstve”, Nauch. dokl. vyssh. shkoly. Fiz.-mat. nauki., 6 (1959), 119–126

[10] Kagan V. F., Subproektivnye prostranstva, M., 1961

[11] Mikesh I., Geodezicheskie otobrazheniya polusimmetricheskikh rimanovykh prostranstv, Dep. v VINITI. — No. 3924-76, 1976

[12] Mikesh I., “O nekotorykh klassakh rimanovykh prostranstv, zamknutykh sootvetstvenno na geodezicheskie otobrazheniya”, VII Vsesoyuz. konf. «Sovremennaya differentsialnaya geometriya», Minsk, 1979, 126

[13] Mikesh I., “O geodezicheskikh otobrazheniyakh Richchi 2-simmetricheskikh rimanovykh prostranstv”, Mat. zametki., 28:2 (1980), 313–317

[14] Mikesh I., “O geodezicheskikh otobrazheniyakh prostranstv Einshteina”, Mat. zametki., 28:6 (1980), 935–938

[15] Mikesh I., “Proektivno-simmetrichnye i proektivno-rekurrentnye prostranstva affinnoi svyaznosti”, Tr. geom. semin., 13 (1981), 61–62

[16] Mikesh I., “Ob ekvidistantnykh kelerovykh prostranstvakh”, Mat. zametki., 38:4 (1985), 627–633

[17] Mikesh I., “O sasakievykh i ekvidistantnykh kelerovykh prostranstvakh”, Dokl. AN SSSR., 291:1 (1986), 33–36

[18] Mikesh I., “O suschestvovanii $n$-mernykh kompaktnykh rimanovykh prostranstv, dopuskayuschikh netrivialnye proektivnye preobrazovaniya «v tselom»”, Dokl. AN SSSR., 305:3 (1989), 534–536

[19] Mikesh I., Ginterleitner I., Guseva N. I., “Geodezicheskie otobrazheniya «v tselom» Richchi-ploskikh prostranstv s $n$ polnymi geodezicheskimi liniyami”, Mat. zametki., 108:2 (2020), 306–310

[20] Mikesh I., Guseva N. I., Peshka P., Ryparova L., “Povorotnye otobrazheniya i proektsii sfery”, Mat. zametki., 110:1 (2021), 151–154

[21] Mikesh I., Guseva N. I., Peshka P., Ryparova L., “Pochti geodezicheskie otobrazheniya i proektsii sfery”, Mat. zametki., 111:3 (2022), 476–480

[22] Mikesh I., Ryparova L., Khuda G., “K teorii povorotnykh otobrazhenii”, Mat. zametki., 104:4 (2018), 637–640

[23] Mikesh I., Sinyukov N. S., “O kvaziplanarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 1983, no. 1, 55–61

[24] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976

[25] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966

[26] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1964

[27] Sinyukov N. S., “O geodezicheskikh otobrazheniyakh rimanovykh mnogoobrazii na simmetricheskie prostranstva”, Dokl. AN SSSR., 98 (1954), 21–23

[28] Sinyukov N. S., “Normalnye geodezicheskie otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 111 (1956), 766–767

[29] Sinyukov N. S., “Ob ekvidistantnykh prostranstvakh”, Vestn. Odessk. un-ta., 1957, 133–135

[30] Sinyukov N. S., “Ob odnom invariantnom preobrazovanii rimanovykh prostranstv s obschimi geodezicheskimi”, Dokl. AN SSSR., 137:6 (1961), 1312–1314

[31] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinosvyaznykh i rimanovykh prostranstv”, Dokl. AN SSSR., 151:4 (1963), 781–782

[32] Sinyukov N. S., “K teorii geodezicheskogo otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 169:4 (1966), 770–772

[33] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i $e$-struktury”, Mat. zametki., 7:4 (1970), 449–459

[34] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979

[35] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Itogi nauki i tekhn. Ser. Probl. geom., 13 (1982), 3–26

[36] Sobchuk V. S., “Pochti geodezicheskoe otobrazhenie rimanovykh prostranstv na simmetricheskie rimanovy prostranstva”, Mat. zametki., 17:5 (1975), 757–763

[37] Solodovnikov A. S., “Proektivnye preobrazovaniya rimanovykh prostranstv”, Usp. mat. nauk., 11:4 (1956), 45–116

[38] Solodovnikov A. S., “Prostranstva s obschimi geodezicheskimi”, Tr. semin. vekt. tenz. anal., 11 (1961), 43–102

[39] Solodovnikov A. S., “Geometricheskoe opisanie vsekh vozmozhnykh predstavlenii rimanovoi metriki v forme Levi-Chivity”, Tr. semin. vekt. tenz. anal., 12 (1963), 131–173

[40] Shadnyi V. S., “Pochti geodezicheskoe otobrazhenie rimanovykh prostranstv na prostranstva postoyannoi krivizny”, Mat. zametki., 25:2 (1979), 293–298

[41] Shapiro Ya. L., “O kvazigeodezicheskom otobrazhenii”, Izv. vuzov. Mat., 1980, no. 9, 53–55

[42] P. A. Shirokov, Izbrannye trudy po geometrii, Izd-vo Kazan. un-ta, Kazan, 1966

[43] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[44] Yablonskaya N. V., “O spetsialnykh gruppakh pochti geodezicheskikh preobrazovanii prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 1986, no. 1, 78–80

[45] Aminova A. V., “Projective transformations of pseudo-Riemannian manifolds”, J. Math. Sci., 113:3 (2003), 367–470

[46] Bejan C.-L., Druţă-Romaniuc S.-L., “Walker manifolds and Killing magnetic curves”, Differ. Geom. Appl., 35, Suppl. (2014), 106–116

[47] Belova O., Mikeš J., “Almost geodesics and special affine connection”, Res. Math., 75:3 (2020), 127

[48] Belova O., Mikeš J., Sherkuziyev M., Sherkuziyeva N., “An analytical inflexibility of surfaces attached along a curve to a surface regarding a point and plane”, Res. Math., 76:2 (2021), 56

[49] Belova O., Mikeš J., Strambach K., “Complex curves as lines of geometries”, Res. Math., 71:1-2 (2017), 145–165

[50] Belova O., Mikeš J., Strambach K., “Geodesics and almost geodesics curves”, Res. Math., 73:4 (2018), 154

[51] Belova O. et al., “Our friend and mathematician Karl Strambach”, Res. Math., 75:2 (2020), 69

[52] Beltrami E., “Risoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentante da linee rette”, Ann. Mat., 1:7 (1865), 185–204

[53] Beltrami E., “Teoria fondamentale degli spazi di curvatura constante”, Ann. Mat., 2:2 (1868), 232–255

[54] Berezovski V., Bácsó S., Mikeš J., “Almost geodesic mappings of affinely connected spaces that preserve the Riemannian curvature”, Ann. Math. Inf., 45 (2015), 3–10

[55] Berezovski V. E., Cherevko Y., Hinterleitner I., Mikeš J., “Canonical almost geodesic mappings of the first type onto generalized Ricci symmetric spaces”, Filomat., 36:4 (2022), 1089–1097

[56] Berezovski V. E., Cherevko Y., Leshchenko S., Mikeš J., “Canonical almost geodesic mappings of the first type of spaces with affine connection onto generalized 2-Ricci-symmetric spaces”, Geom. Integr. Quant., 22 (2021), 78–87

[57] Berezovski V. E., Cherevko Y., Mikeš J., Rýparová L., “Canonical almost geodesic mappings of the first type of spaces with affine connections onto generalized $m$-Ricci-symmetric spaces”, Mathematics., 9:4 (2021), 437

[58] Berezovski V. E., Cherevko Y., Rýparová L., “Conformal and geodesic mappings onto some special spaces”, Mathematics., 7:8 (2019), 664

[59] Berezovski V. E., Jukl M., Juklová L., “Almost geodesic mappings of the first type onto symmetric spaces”, Proc. 16th Conf. APLIMAT 2017, Bratislava, 2017, 126–131

[60] Berezovski V. E., Kuzmina I. A., Mikeš J., “Canonical $F$-planar mappings of spaces with affine connection to two symmetric spaces”, Lobachevskii J. Math., 43:3 (2022), 533–538

[61] Berezovski V. E., Mikeš J., “On the classification of almost geodesic mappings of affine-connected spaces”, Proc. Conf. “Differential Geometry and Applications” (Dubrovnik, 1988), 1989, 41–48

[62] Berezovski V. E., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Univ. Palacki. Olomuc. Math., 35 (1996), 21–24

[63] Berezovski V. E., Mikeš J., “On almost geodesic mappings of the type $\pi_1$ of Riemannian spaces preserving a system of $n$-orthogonal hypersurfaces”, Rend. Circ. Mat. Palermo., 59 (1999), 103–108

[64] Berezovski V. E., Mikeš J., “Almost geodesic mappings of spaces with affine connection”, J. Math. Sci., 207:3 (2015), 389–409

[65] Berezovski V. E., Mikeš J., Peška P., Rýparová L., “On canonical $f$-planar mappings of spaces with affine connection”, Filomat., 33:4 (2019), 1273–1278

[66] Berezovski V. E., Mikeš J., Radulović Ž., “Almost geodesic mappings of type $\pi_1^*$ of spaces with affine connection”, Math. Montisnigri., 52 (2021), 30–36

[67] Berezovski V. E., Mikeš J., Rýparová L., “Geodesic mappings of spaces with affine connnection onto generalized Ricci symmetric spaces”, Filomat., 33:14 (2019), 4475–4480

[68] Berezovskii V., Mikeš J., Rýparová L., “Conformal and geodesic mappings onto Ricci symmetric spaces”, Proc. 19th Conf. APLIMAT 2020, 20 (2020), 65–72

[69] Berezovskii V. E., Mikeš J., Rýparová L., Sabykanov A., “On canonical almost geodesic mappings of type $\pi_2(e)$”, Mathematics., 8:1 (2020), 54

[70] Berezovski V. E., Mikeš J., Vanžurová A., “Almost geodesic mappings onto generalized Ricci-symmetric manifolds”, Acta Math. Acad. Paedag. Nyiregyhaziensis., 26 (2010), 221–230

[71] Berezovski V. E., Mikeš J., Vanžurová A., “Fundamental PDE's of the canonical almost geodesic mappings of type $\pi_1$”, Bull. Malays. Math. Sci. Soc., 37 (2014), 647–659

[72] Chudá H., Mikeš J., “Conformally geodesic mappings satisfying a certain initial condition”, Arch. Math., 47:5 (2011), 389–394

[73] Ćirić M. S., Zlatanović M. Lj., Stanković M. S., Velimirović Lj. S., “On geodesic mappings of equidistant generalized Riemannian spaces”, Appl. Math. Comput., 218:12 (2012), 6648–6655

[74] Eisenhart L. P., Non-Riemannian Geometry, Dover, Mineola, NY, 2005

[75] Eisenhart L. P., Continuous Groups of Transformations, Dover, New York, 1961

[76] Hinterleitner I., Mikeš J., “Fundamental equations of geodesic mappings and their generalizations”, J. Math. Sci., 174:5 (2011), 537–554

[77] Hinterleitner I., Mikeš J., “Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability”, Miskolc. Math. Notes., 14:2 (2013), 575–582

[78] Hinterleitner I., Mikeš J., Peška P., “Fundamental equations of $F$-planar mappings”, Lobachevskii J. Math., 38:4 (2017), 653–659

[79] Kozak A., Borowiec A., “Palatini frames in scalar-tensor theories of gravity”, Eur. Phys. J., 79 (2019), 335

[80] Křížek J., Mikeš J., Peška P., Rýparová L., “Extremals and isoperimetric extremals of the rotations in the plane”, Geom. Integr. Quant., 22 (2021), 136–141

[81] Levi-Civita T., “Sulle trasformazioni dello equazioni dinamiche”, Ann. Mat., 24 (1896), 252–300

[82] Mikeš J., “Geodesic mappings of special Riemannian spaces”, Colloq. Math. Soc. J. Bolyai., 46 (1988), 793–813

[83] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78:3 (1996), 311–333

[84] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci., 89:3 (1998), 1334–1353

[85] Mikeš J., Berezovski V. E., Stepanova E., Chudá H., “Geodesic mappings and their generalizations”, J. Math. Sci., 217:5 (2016), 607–623

[86] Mikeš J., Chudá H., Hinterleitner I., “Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition”, Int. J. Geom. Meth. Modern Phys., 11:5 (2014), 1450044

[87] Mikeš J., Jukl M., Juklová L., “Some results on traceless decomposition of tensors”, J. Math. Sci., 174:5 (2011), 627–640

[88] Mikeš J., Peška P., Rýparová L., “Isoperimetric extremals of rotation on sphere”, Geom. Integr. Quant., 21 (2020), 181–185

[89] Mikeš J., Pokorná O., Starko G. A., Vavříková H., “On almost geodesic mappings $\pi_2(e)$, $e=\pm 1$”, Proc. Conf. APLIMAT, Bratislava, 2005, 315–321

[90] Mikeš J., Rýparová L., “Rotary mappings of spaces with affine connection”, Filomat., 33:4 (2019), 1147–1152

[91] Mikeš J., Strambach K., “Differentiable structures on elementary geometries”, Res. Math., 53:1-2 (2009), 153–172

[92] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc, 2009

[93] Mikeš J. et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2015

[94] Najdanović M. S., Zlatanović M. Lj., Hinterleitner I., “Conformal and geodesic mappings of generalized equidistant spaces”, Publ. Inst. Math., Nouv. Sér., 98 (112) (2015), 71–84

[95] Peška P., Mikeš J., Rýparová L., “Almost geodesic curves as intersections of $n$-dimensional spheres”, Lobachevskii J. Math., 43:3 (2022), 687–690

[96] Petrov A. Z., “Modeling of physical fields”, Gravit. Gen. Relat., 4 (1968), 7–21

[97] Petrović M. Z., “Canonical almost geodesic mappings of type $_\theta\pi_2(0,F)$, $\theta\in\{1,2\}$ between generalized parabolic Kähler manifolds”, Miskolc. Math. Notes., 19 (2018), 469–482

[98] Petrović M. Z., “Special almost geodesic mappings of the second type between generalized Riemannian spaces”, Bull. Malays. Math. Sci. Soc., 42 (2019), 707–727

[99] Petrović M. Z., Stanković M. S., “Special almost geodesic mappings of the first type of non-symmetric affine connection spaces”, Bull. Malays. Math. Sci. Soc., 40 (2017), 1353–1362

[100] Radulovich Zh., Mikeš J., Gavril'chenko M. L., Geodesic Mappings and Deformations of Riemannian Spaces, CID, Podgorica, 1997

[101] Rýparová L., Křížek J., Mike\v {s} J., “On fundamental equations of rotary vector fields”, Proc. 18th Conf. Appl. Math. APLIMAT 2019, 2019, 1031–1035

[102] Rýparová L., Mikeš J., “On global geodesic mappings of quadrics of revolution”, Proc. 16th Conf. Appl. Math. APLIMAT 2017, 2017, 1342–1348

[103] Rýparová L., Mikeš J., “On geodesic bifurcations”, Geom. Integr. Quant., 18 (2017), 217–224

[104] Rýparová L., Mikeš J., “Bifurcation of closed geodesiscs”, Geom. Integr. Quant., 19 (2018), 188–192

[105] Rýparová L., Mikeš J., “Infinitesimal rotary transformation”, Filomat., 33:4 (2019), 1153–1157

[106] Rýparová L., Mikeš J., Sabykanov A., “On geodesic bifurcations of product spaces”, J. Math. Sci., 239:1 (2019), 86–91

[107] Shandra I. G., Mikeš J., “Geodesic mappings of semi-Riemannian manifolds with a degenerate metric”, Mathematics., 10:1 (2022), 154

[108] Sobchuk V. S., Mikeš J., Pokorná O., “On almost geodesic mappings $\pi_2$ between semisymmetric Riemannian spaces”, Novi Sad J. Math., 9 (1999), 309–312

[109] Stanković M. S., “On canonic almost geodesic mappings of the second type of affine spaces”, Filomat., 13 (1999), 105–144

[110] Stanković M. S., Ćirić M. S., Zlatanović M. Lj., “Geodesic mappings of equiaffine and anti-equiaffine general affine connection spaces preserving torsion”, Filomat., 26:3 (2012), 439–451

[111] Stanković M. S., Minčić S. M., Zlatanović M. Lj., Velimirović Lj. S., “On equitorsion geodesic mappings of general affine connection spaces”, Rend. Semin. Mat. Univ. Padova., 124 (2010), 77–90

[112] Stanković M. S., Zlatanović M. Lj., Velimirović Lj. S., “Equitorsion holomorphically projective mappings of generalized Kählerian space of the second kind”, Int. Electron. J. Geom., 3:2 (2010), 26–39

[113] Stanković M. S., Zlatanović M. L., Vesić N. O., “Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity”, Czech. Math. J., 65 (2015), 787–799

[114] Stanković M. S., Zlatanović M. L., Vesić N. O., “Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity”, Czech. Math. J., 65 (2015), 787–799

[115] Stepanov S. E., Mikeš J., “Betti and Tachibana numbers of compact Riemannian manifolds”, Differ. Geom. Appl., 31:4 (2013), 486–495

[116] Stepanov S., Mikeš J., “Application of the Hopf maximum principle to the theory of geodesic mappings”, Kragujevac J. Math., 45:5 (2021), 781–786

[117] Stepanov S., Mikeš J., “What is the Bochner technique and where is it applied?”, Lobachevskii J. Math., 43:3 (2022), 709–719

[118] Thomas J. M., “Asymmetric displacement of a vector”, Trans. Am. Math. Soc., 28:4 (1926), 658–670

[119] Thomas T. Y., “On projective and equiprojective geometries of paths”, Natl. Acad. Sci. U.S.A., 11 (1925), 198–203

[120] Thomas T. Y., “Note on the projective geometry of paths”, Bull. Am. Math. Soc., 31 (1925), 318–322

[121] Vesić N. O., Stanković M. S., “Invariants of special second-type almost geodesic mappings of generalized Riemannian space”, Mediterr. J. Math., 15:60 (2018)

[122] Vesić N. O., Velimirović L. S., Stanković M. S., “Some invariants of equitorsion third type almost geodesic mappings”, Mediterr. J. Math., 13 (2016), 4581–4590

[123] Vesić N. O., Zlatanović M. Lj., “Invariants for geodesic and F-planar mappings of generalized Riemannian spaces”, Quaest. Math., 44:7 (2021), 983–996

[124] Vesić N. O., Zlatanović M. Lj., Velimirović A. M., “Projective invariants for equitorsion geodesic mappings of semi-symmetric affine connection spaces”, J. Math. Anal. Appl., 472:2 (2019), 1571–1580

[125] Vrançeanu G., “Proprietati globale ale spatiilor bui Riemann cu conexiune abina constanta”, Stud. Cerc. Mat. Acad. RPR., 14:1 (1963), 7–22

[126] Weyl H., “Zur Infinitesimalgeometrie Einordnung der projektiven und der konformen Auffassung”, Göttinger Nachrichten., 1921, 99–112

[127] Zlatanović M. Lj., “On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces”, Appl. Math. Lett., 24:5 (2011), 665–671

[128] Zlatanović M. Lj., “New projective tensors for equitorsion geodesic mappings”, Appl. Math. Lett., 25:5 (2012), 890–897

[129] Zlatanović M. Lj., Hinterleitner I., Najdanović M., “On equitorsion concircular tensors of generalized Riemannian spaces”, Filomat., 28:3 (2014), 463–471

[130] Zlatanović M. Lj., Hinterleitner I., Najdanović M., “Geodesic mapping onto Kählerian spaces of the first kind”, Czech. Math. J., 64:4 (2014), 1113–1122

[131] Zlatanović M. Lj., Stanković V., “Geodesic mapping onto Kählerian space of the third kind”, J. Math. Anal. Appl., 450:1 (2017), 480–489

[132] Zlatanović M. Lj., Velimirović Lj. S., Stanković M. S., “Necessary and sufficient conditions for equitorsion geodesic mapping”, J. Math. Anal. Appl., 435:1 (2016), 578–592