Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. II
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 71-92

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider problems of stabilization of stationary motions (equilibrium positions and regular precessions) of a satellite near the center of mass in gravitational and magnetic fields under the assumption that the center of mass moves in a circular orbit. Mathematical models of the problems considered are systems of differential equations with periodic coefficients. We present a rigorous analytical approach to this problem, which allows efficient and correct construction of stabilization algorithms. The method is based on the reducibility of nonstationary systems that describe these problems to stationary systems. Solutions for a number of problems of stabilizing stationary motions of a satellite with the help of magnetic systems are proposed. We present the results of mathematical modeling of the algorithms, which confirm the effectiveness of the developed methodology. This paper is the second part of the work. The first part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 71–85.
Keywords: linear nonstationary system, reducibility, stationary motions, linearized equations of satellite motions, stabilization, controllability, control algorithms.
@article{INTO_2023_221_a7,
     author = {V. M. Morozov and V. I. Kalenova and M. G. Rak},
     title = {Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. {II}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {71--92},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a7/}
}
TY  - JOUR
AU  - V. M. Morozov
AU  - V. I. Kalenova
AU  - M. G. Rak
TI  - Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. II
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 71
EP  - 92
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a7/
LA  - ru
ID  - INTO_2023_221_a7
ER  - 
%0 Journal Article
%A V. M. Morozov
%A V. I. Kalenova
%A M. G. Rak
%T Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. II
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 71-92
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a7/
%G ru
%F INTO_2023_221_a7
V. M. Morozov; V. I. Kalenova; M. G. Rak. Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. II. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 71-92. http://geodesic.mathdoc.fr/item/INTO_2023_221_a7/