Difference schemes of the finite element method of increased accuracy for solving nonstationary equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 115-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the finite element method with piecewise-cubic interpolation, we construct and examine three-parameter difference schemes of increased accuracy for a second-order ordinary differential equation. Stability and convergence of difference schemes are proved and accuracy estimates are obtained. The schemes proposed are tested and compared in computing experiments.
Keywords: nonstationary equations, finite difference method, finite element method, difference scheme, stability, accuracy.
Mots-clés : convergence
@article{INTO_2023_221_a10,
     author = {D. Utebaev and G. Kh. Utepbergenova and M. M. Kazymbetova},
     title = {Difference schemes of the finite element method of increased accuracy for solving nonstationary equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--127},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a10/}
}
TY  - JOUR
AU  - D. Utebaev
AU  - G. Kh. Utepbergenova
AU  - M. M. Kazymbetova
TI  - Difference schemes of the finite element method of increased accuracy for solving nonstationary equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 115
EP  - 127
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a10/
LA  - ru
ID  - INTO_2023_221_a10
ER  - 
%0 Journal Article
%A D. Utebaev
%A G. Kh. Utepbergenova
%A M. M. Kazymbetova
%T Difference schemes of the finite element method of increased accuracy for solving nonstationary equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 115-127
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a10/
%G ru
%F INTO_2023_221_a10
D. Utebaev; G. Kh. Utepbergenova; M. M. Kazymbetova. Difference schemes of the finite element method of increased accuracy for solving nonstationary equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 115-127. http://geodesic.mathdoc.fr/item/INTO_2023_221_a10/

[1] Vinogradova M. B., Rudenko O. V., Sukhorukov A. P., Teoriya voln, Nauka, M., 1979

[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984

[3] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990

[4] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976

[5] Dekker K., Verver Ya., Ustoichivost metodov Runge—Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988

[6] Zamyshlyaeva A. A., “Ob algoritme chislennogo modelirovaniya voln Bussineska—Lyava”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Kompyut. tekh. Upravl. Radioel., 13:4 (2013), y 24–29

[7] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[8] Lafisheva M. M., Kerefov M. A., Dyshekova R. V., “Raznostnye skhemy dlya uravneniya vlagoperenosa Allera—Lykova s nelokalnym usloviem”, Vladikavkaz. mat. zh., 19:1 (2017), 50–58

[9] Moskalkov M. N., “Ob odnom svoistve skhemy povyshennogo poryadka tochnosti dlya odnomernogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 15:1 (1975), 254–260

[10] Moskalkov M. N., “Skhema metoda konechnykh elementov povyshennoi tochnosti dlya resheniya nestatsionarnykh uravnenii vtorogo poryadka”, Differ. uravn., 16:1 (1980), 1283–1292

[11] Moskalkov M. N., Utebaev D., Chislennoe modelirovanie nestatsionarnykh protsessov mekhaniki sploshnoi sredy, Tashkent, Fan va tekhnologiya, 2012

[12] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[13] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[14] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997

[15] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979

[16] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[17] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983

[19] Utebaev D., Raznostnye skhemy dlya giperbolicheskikh sistem uravnenii s obobschennymi resheniyami, Fan va tekhnologiya, Tashkent, 2017

[20] Aripov M., Utebaev D., Nurullaev Zh., “Convergence of high-precision finite element method schemes for the two-temperature plasma equation”, AIP Conf. Proc., 2325 (2021), 020059

[21] Moskalkov M. N., Utebaev D., “Finite element method for the gravity-gyroscopic wave equation”, J. Comput. Appl. Math., 2010, no. 2 (101), 97–104

[22] Moskalkov M. N., Utebaev D., “Convergence of the finite element scheme for the equation of internal waves”, Cybern. Syst. Anal., 47:3 (2011), 459–465

[23] Moskalkov M. N., Utebaev D., “Comparison of some methods for solving the internal wave propagation problem in a weakly stratified fluid”, Math. Mod. Comp. Simul., 3:2 (2012), 264–271

[24] Moskalkov M. N., Utebaev D., “Finite element solution of a problem for gravity-gyroscopic wave equation in the time domain”, Appl. Math., 5:8 (2014), 1200–1212

[25] Moskalkov M. N., Utebaev D., “Solution of the Neumann problem with respect to the eqation for gravity-gyroscopic waves by the finite element method”, J. Adv. Appl. Math., 1:2 (2016), 107–119

[26] Utebaev D., Utebaev B., “Comparison of some numerical methods of solution of wave equations with strong dispersion”, AIP Conf. Proc., 2365 (2021), 020009

[27] Utebaev D., Utepbergenova G. X., Tileuov K. O., “On convergence of schemes of finite element method of high accuracy for the equation of heat and moisture transfer”, Bull. Karaganda Univ., 2021, no. 2 (101), 29–43