An analog of the Gauss--Aleksandrov theorem about the area of the spherical image of a nonconvex polyhedral angle without singularities
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we formulate the definitions of еру spherical image, the area of the spherical image, and the implementation curvature for a class of polyhedral angles without singularities. Also, we prove a theorem on the equality of the area of the spherical image and the implementation curvature of a polyhedral angle from a distinguished class.
Keywords: Gauss theorem, area of a spherical image, nonconvex polyhedron, implementation curvature.
@article{INTO_2023_221_a1,
     author = {L. A. Antipova},
     title = {An analog of the {Gauss--Aleksandrov} theorem about the area of the spherical image of a nonconvex polyhedral angle without singularities},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a1/}
}
TY  - JOUR
AU  - L. A. Antipova
TI  - An analog of the Gauss--Aleksandrov theorem about the area of the spherical image of a nonconvex polyhedral angle without singularities
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 10
EP  - 19
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a1/
LA  - ru
ID  - INTO_2023_221_a1
ER  - 
%0 Journal Article
%A L. A. Antipova
%T An analog of the Gauss--Aleksandrov theorem about the area of the spherical image of a nonconvex polyhedral angle without singularities
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 10-19
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a1/
%G ru
%F INTO_2023_221_a1
L. A. Antipova. An analog of the Gauss--Aleksandrov theorem about the area of the spherical image of a nonconvex polyhedral angle without singularities. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 10-19. http://geodesic.mathdoc.fr/item/INTO_2023_221_a1/

[1] Aleksandrov A. D., Izbrannye trudy. T. 2. Vypuklye mnogogranniki, Nauka, Novosibirsk, 2007

[2] Aleksandrov A. D., Verner A. L., Ryzhik V. I., Geometriya 11. Uchebnik dlya uglublennogo izucheniya, Prosveschenie, M., 2000

[3] Verner A. L., Antipova L. A., Stroenie nevypuklykh odnorodnykh mnogogrannikov s vypuklymi granyami, Izd-vo RGPU im. A. I. Gertsena, SPb., 2021