Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_220_a5, author = {S. A. Dukhnovskii}, title = {Secular condition for the {McKean} system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {44--48}, publisher = {mathdoc}, volume = {220}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/} }
TY - JOUR AU - S. A. Dukhnovskii TI - Secular condition for the McKean system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 44 EP - 48 VL - 220 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/ LA - ru ID - INTO_2023_220_a5 ER -
S. A. Dukhnovskii. Secular condition for the McKean system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 44-48. http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/
[1] Vasileva O. A., Dukhnovskii S. A., “Uslovie sekulyarnosti kineticheskoi sistemy Karlemana”, Vestn. MGSU., 2015, no. 3, 33–40
[2] Vedenyapin V. V., Mingalev I. V., Mingalev O. V., “O diskretnykh modelyakh kvantovogo uravneniya Boltsmana”, Mat. sb., 184:11 (1993), 21–38
[3] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51
[4] Dukhnovskii S. A., “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 2020, 176
[5] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, Teor. mat. fiz., 170:3 (2012), 481–488
[6] Lindblom O., Eiler N., “Reshenie uravnenii Boltsmana dlya diskretnykh skorostei pri pomoschi uravnenii Beitmena i Rikkati”, Teor. mat. fiz., 131:2 (2002), 522–526
[7] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373
[8] Radkevich E. V., “O povedenii na bolshikh vremenakh reshenii zadachi Koshi dlya dvumernogo kineticheskogo uravneniya”, Sovr. mat. Fundam. napr., 47 (2013), 108–139
[9] Dukhnovsky S. A., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94:3 (2020), 3–11
[10] Dukhnovsky S. A., “The tanh-function method and the $(G'/G)$-expansion method for the kinetic McKean system”, Differ. Equations Control Processes., 2021, no. 2, 87–100
[11] Euler N., Steeb W.-H., “Painlevé test and discrete Boltzmann equations”, Austr. J. Phys., 42 (1989), 1–10
[12] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015), 296–323
[13] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453