Secular condition for the McKean system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 44-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the McKean kinetic system for two groups of particles with periodic initial data in the weight space. The system is reduced to an integro-differential operator containing nonintegrable terms. We find a secularity condition that allows one to eliminate the nondissipative part and hence reduce the problem to a nonlinear equation in a Hilbert space; this is the main step towards proving the stabilization of the solution.
Keywords: McKean kinetic system, Fourier series, weight space, Cauchy problem.
@article{INTO_2023_220_a5,
     author = {S. A. Dukhnovskii},
     title = {Secular condition for the {McKean} system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--48},
     publisher = {mathdoc},
     volume = {220},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Secular condition for the McKean system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 44
EP  - 48
VL  - 220
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/
LA  - ru
ID  - INTO_2023_220_a5
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Secular condition for the McKean system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 44-48
%V 220
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/
%G ru
%F INTO_2023_220_a5
S. A. Dukhnovskii. Secular condition for the McKean system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 44-48. http://geodesic.mathdoc.fr/item/INTO_2023_220_a5/

[1] Vasileva O. A., Dukhnovskii S. A., “Uslovie sekulyarnosti kineticheskoi sistemy Karlemana”, Vestn. MGSU., 2015, no. 3, 33–40

[2] Vedenyapin V. V., Mingalev I. V., Mingalev O. V., “O diskretnykh modelyakh kvantovogo uravneniya Boltsmana”, Mat. sb., 184:11 (1993), 21–38

[3] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51

[4] Dukhnovskii S. A., “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 2020, 176

[5] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, Teor. mat. fiz., 170:3 (2012), 481–488

[6] Lindblom O., Eiler N., “Reshenie uravnenii Boltsmana dlya diskretnykh skorostei pri pomoschi uravnenii Beitmena i Rikkati”, Teor. mat. fiz., 131:2 (2002), 522–526

[7] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. RAN., 447:4 (2012), 369–373

[8] Radkevich E. V., “O povedenii na bolshikh vremenakh reshenii zadachi Koshi dlya dvumernogo kineticheskogo uravneniya”, Sovr. mat. Fundam. napr., 47 (2013), 108–139

[9] Dukhnovsky S. A., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94:3 (2020), 3–11

[10] Dukhnovsky S. A., “The tanh-function method and the $(G'/G)$-expansion method for the kinetic McKean system”, Differ. Equations Control Processes., 2021, no. 2, 87–100

[11] Euler N., Steeb W.-H., “Painlevé test and discrete Boltzmann equations”, Austr. J. Phys., 42 (1989), 1–10

[12] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015), 296–323

[13] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453