Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_220_a4, author = {N. P. Gushel'}, title = {On estimating the number of elementary transformations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {38--43}, publisher = {mathdoc}, volume = {220}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a4/} }
TY - JOUR AU - N. P. Gushel' TI - On estimating the number of elementary transformations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 38 EP - 43 VL - 220 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_220_a4/ LA - ru ID - INTO_2023_220_a4 ER -
N. P. Gushel'. On estimating the number of elementary transformations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 38-43. http://geodesic.mathdoc.fr/item/INTO_2023_220_a4/
[4] Gushel N. P., “Ochen obilnye divizory na proektivnykh rassloeniyakh nad ellipticheskoi krivoi”, Mat. zametki., 47:6 (1990), 15–22
[5] Gushel N. P., “Ob elementarnykh preobrazovaniyakh proektivnykh rassloenii nad krivymi”, Tr. X Mezhdunar. konf. «Kolmogorovskie chteniya», Yaroslavl, 2012, 50–52
[6] Gushel N. P., “O neprivodimykh divizorakh, secheniyakh i stepenyakh stabilnosti proektivnykh rassloenii nad krivymi”, Mat. IX Vseross. konf, Yaroslavl, 2020, 196–201
[7] Tyurin A. N., “Geometriya modulei vektornykh rassloenii”, Usp. mat. nauk., 29:6 (1974), 59–88
[8] Homma Y., “Projective normality and the defining equations of ample invertible sheaves on elliptic ruled surfaces with negative invariant”, Natural Sci. Rept. Ochanomizu Univ., 33:1-2 (1982), 17–26
[9] Nagata M., Maruyama M., “Note on the structure of a ruled surface”, J. Reine Angew. Math., 239/240 (1970), 68–73