Centrally essential semigroup algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 54-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a cancellative semigroup $S$ and a field $F$, we prove that the semigroup algebra $FS$ is centrally essential if and only if the group of fractions $G_S$ of the semigroup $S$ exists and the group algebra $FG_S$ of $G_S$ is centrally essential. The semigroup algebra of a cancellative semigroup is centrally essential if and only if it has the classical right ring of fractions, which is a centrally essential ring. There exist noncommutative, centrally essential semigroup algebras over fields of zero characteristic (this contrasts with the known fact that centrally essential group algebras over fields of zero characteristic are commutative).
Keywords: cancellative semigroup, semigroup ring, centrally essential ring.
@article{INTO_2023_219_a5,
     author = {O. V. Ljubimtsev and A. Tuganbaev},
     title = {Centrally essential semigroup algebras},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {54--59},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a5/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - A. Tuganbaev
TI  - Centrally essential semigroup algebras
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 54
EP  - 59
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a5/
LA  - ru
ID  - INTO_2023_219_a5
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A A. Tuganbaev
%T Centrally essential semigroup algebras
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 54-59
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a5/
%G ru
%F INTO_2023_219_a5
O. V. Ljubimtsev; A. Tuganbaev. Centrally essential semigroup algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 54-59. http://geodesic.mathdoc.fr/item/INTO_2023_219_a5/

[1] Clifford A. H., Prieston G. B., The Algebraic Theory of Semigroups, Am. Math. Soc., Providence, Rhode Island, 1961

[2] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential endomorphism rings of abelian groups”, Commun. Algebra., 48:3 (2020), 1249–1256 | DOI

[3] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential torsion-free rings of finite rank”, Beitr. Algebra Geom., 62:3 (2021), 615–622 | DOI

[4] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential group algebras and classical rings of fractions”, Lobachevskii J. Math., 42:12 (2021), 2890–2894 | DOI

[5] Markov V. T., Tuganbaev A. A., “Centrally essential group algebras”, J. Algebra., 512:15 (2018), 109–118 | DOI

[6] Markov V. T., Tuganbaev A. A., “Rings essential over their centers”, Commun. Algebra., 47:4 (2019), 1642–1649 | DOI

[7] Markov V. T., Tuganbaev A. A., “Uniserial Noetherian centrally essential rings”, Commun. Algebra., 48:1 (2020), 149–153 | DOI

[8] Okniński J., Semigroup Algebras, Marcel Dekker, New York–Basel, 1991

[9] Passman D. S., The Algebraic Structure of Group Rings, Wiley, New York, 1977