Maximal and minimal ideals of centrally essential rings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 50-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a ring $R$ with center $Z(R)$ such that the module $R_{Z(R)}$ is an essential extension of the module $Z(R)_{Z(R)}$ need not be right quasi-invariant, i.e., not all maximal right ideals of the ring $R$ are ideals. In terms of the central essentiality property, we obtain sufficient conditions for the fact that all maximal right ideals are ideals.
Keywords: centrally essential ring, maximal right ideal, minimal right ideal.
@article{INTO_2023_219_a4,
     author = {O. V. Ljubimtsev and A. Tuganbaev},
     title = {Maximal and minimal ideals of centrally essential rings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--53},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - A. Tuganbaev
TI  - Maximal and minimal ideals of centrally essential rings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 50
EP  - 53
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/
LA  - ru
ID  - INTO_2023_219_a4
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A A. Tuganbaev
%T Maximal and minimal ideals of centrally essential rings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 50-53
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/
%G ru
%F INTO_2023_219_a4
O. V. Ljubimtsev; A. Tuganbaev. Maximal and minimal ideals of centrally essential rings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 50-53. http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/

[1] Markov V. T., Tuganbaev A. A., “Centrally essential group algebras”, J. Algebra., 512:15 (2018), 109–118 | DOI

[2] Markov V. T., Tuganbaev A. A., “Tsentralno suschestvennye koltsa”, Diskr. mat., 30:2 (2018), 55–61 | DOI | MR

[3] Huh C., Jang S.-H., Kim C.-O., Lee Y., “Rings whose maximal one-sided ideals are two-sided”, Bull. Korean Math. Soc., 39:3 (2002), 411–422 | DOI

[4] Markov V. T., Tuganbaev A. A., “Rings essential over their centers”, Commun. Algebra., 47:4 (2019), 1642–1649 | DOI

[5] Markov V. T., Tuganbaev A. A., “Constructions of centrally essential rings”, Commun. Algebra., 48:1 (2020), 198–203 | DOI