Maximal and minimal ideals of centrally essential rings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 50-53
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that a ring $R$ with center $Z(R)$ such that the module $R_{Z(R)}$ is an essential extension of the module $Z(R)_{Z(R)}$ need not be right quasi-invariant, i.e., not all maximal right ideals of the ring $R$ are ideals. In terms of the central essentiality property, we obtain sufficient conditions for the fact that all maximal right ideals are ideals.
Keywords:
centrally essential ring, maximal right ideal, minimal right ideal.
@article{INTO_2023_219_a4,
author = {O. V. Ljubimtsev and A. Tuganbaev},
title = {Maximal and minimal ideals of centrally essential rings},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {50--53},
year = {2023},
volume = {219},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/}
}
TY - JOUR AU - O. V. Ljubimtsev AU - A. Tuganbaev TI - Maximal and minimal ideals of centrally essential rings JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 50 EP - 53 VL - 219 UR - http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/ LA - ru ID - INTO_2023_219_a4 ER -
%0 Journal Article %A O. V. Ljubimtsev %A A. Tuganbaev %T Maximal and minimal ideals of centrally essential rings %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 50-53 %V 219 %U http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/ %G ru %F INTO_2023_219_a4
O. V. Ljubimtsev; A. Tuganbaev. Maximal and minimal ideals of centrally essential rings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 50-53. http://geodesic.mathdoc.fr/item/INTO_2023_219_a4/
[1] Markov V. T., Tuganbaev A. A., “Centrally essential group algebras”, J. Algebra., 512:15 (2018), 109–118 | DOI
[2] Markov V. T., Tuganbaev A. A., “Tsentralno suschestvennye koltsa”, Diskr. mat., 30:2 (2018), 55–61 | DOI | MR
[3] Huh C., Jang S.-H., Kim C.-O., Lee Y., “Rings whose maximal one-sided ideals are two-sided”, Bull. Korean Math. Soc., 39:3 (2002), 411–422 | DOI
[4] Markov V. T., Tuganbaev A. A., “Rings essential over their centers”, Commun. Algebra., 47:4 (2019), 1642–1649 | DOI
[5] Markov V. T., Tuganbaev A. A., “Constructions of centrally essential rings”, Commun. Algebra., 48:1 (2020), 198–203 | DOI