Automorphisms of matrix rings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 16-38
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We examine the automorphism groups of algebras of formal matrices. We also consider automorphisms of ordinary matrix algebras (in particular, algebras of triangular matrices).
Mots-clés : algebra of formal matrices, automorphism.
Keywords: algebra of triangular matrices
@article{INTO_2023_219_a1,
     author = {P. A. Krylov and A. Tuganbaev},
     title = {Automorphisms of matrix rings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--38},
     year = {2023},
     volume = {219},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - A. Tuganbaev
TI  - Automorphisms of matrix rings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 16
EP  - 38
VL  - 219
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/
LA  - ru
ID  - INTO_2023_219_a1
ER  - 
%0 Journal Article
%A P. A. Krylov
%A A. Tuganbaev
%T Automorphisms of matrix rings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 16-38
%V 219
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/
%G ru
%F INTO_2023_219_a1
P. A. Krylov; A. Tuganbaev. Automorphisms of matrix rings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 16-38. http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/

[1] Abyzov A. N., Tapkin D. T., “Koltsa formalnykh matrits i ikh izomorfizmy”, Sib. mat. zh., 56:6 (2015), 1199–1214 | DOI | MR

[2] Abyzov A. N., Tapkin D. T., “O nekotorykh klassakh kolets formalnykh matrits”, Izv. vuzov. Mat., 2015, no. 3, 3–14

[3] Krylov P. A., “Afinnye gruppy modulei i ikh avtomorfizmy”, Algebra i logika., 40:1 (2001), 60–82 | MR | Zbl

[4] Krylov P. A., Norbosambuev Ts. D., “Avtomorfizmy algebr formalnykh matrits”, Sib. mat. zh., 59:5 (2018), 1116–1127 | DOI

[5] Krylov P. A., Norbosambuev Ts. D., “Gruppa avtomorfizmov odnogo klassa algebr formalnykh matrits”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 2018, no. 53, 16–21 | DOI

[6] Levchuk V. M., “Avtomorfizmy nekotorykh nilpotentnykh matrichnykh grupp i kolets”, Dokl. AN SSSR., 222:6 (1975), 1279–1282 | MR | Zbl

[7] Tapkin D. T., “Koltsa formalnykh matrits i obobschenie algebry intsidentnosti”, Chebyshev. sb., 16:3 (2015), 442–449

[8] Tapkin D. T., “Izomorfizmy kolets intsidentnosti formalnykh matrits”, Izv. vuzov. Mat., 2017, no. 12, 84–91

[9] Tapkin D. T., “Izomorfizmy kolets formalnykh matrits s nulevymi idealami sleda”, Sib. mat. zh., 59:3 (2018), 659–675 | DOI

[10] Ánh P. N., van Wyk L., “Automorphism groups of generalized triangular matrix rings”, Lin. Algebra Appl., 434:4 (2011), 1018–1026 | DOI

[11] Ánh P. N., van Wyk L., “Isomorphisms between strongly triangular matrix rings”, Lin. Algebra Appl., 438:11 (2013), 4374–4381 | DOI

[12] Barker G. P., “Automorphism groups of algebras of triangular matrices”, Lin. Algebra Appl., 121:C (1989), 207–215 | DOI

[13] Bass H., Algebraic $K$-Theory, New York, 1968

[14] Birkenmeier G. F., Heatherly H. E., Kim J. Y., Park J. K., “Triangular Matrix Representations”, J. Algebra., 230:2 (2000), 558–595 | DOI

[15] Boboc C., Dǎscǎlescu S., van Wyk L., “Isomorphisms between Morita context rings”, Lin. Multilin. Algebra., 60:5 (2012), 545–563 | DOI

[16] Faith C. C., Algebra: Rings, Modules and Categories, Springer-Verlag, Berlin, 1973

[17] Haefner J., HolcombT., “The Picard group of a structural matrix algebra”, Lin. Algebra Appl., 304:1-3 (2000), 69–101 | DOI

[18] Isaacs I. M., “Automorphisms of matrix algebras over commutative rings”, Lin. Algebra Appl., 31C (1980), 215–231 | DOI

[19] Jøndrup S., “The group of automorphisms of certain subalgebras of matrix algebras”, J. Algebra., 141 (1991), 106–114

[20] Jøndrup S., “Automorphisms and derivations of upper triangular matrix rings”, Lin. Algebra Appl., 221C (1995), 205–218 | DOI

[21] Kezlan T. P., “A note on algebra automorphisms of triangular matrices over commutative rings”, Lin. Algebra Appl., 135C (1990), 181–184 | DOI

[22] Khazal R., Dǎscǎlescu S., van Wyk L., “Isomorphism of generalized triangular matrix-rings and recovery of tiles”, Int. J. Math. Math. Sci., 2003:9 (2003), 533–538 | DOI

[23] Koppinen M., “Three automorphism theorems for triangular matrix algebras”, Lin. Algebra Appl., 245 (1996), 295–304 | DOI

[24] Krylov P., Tuganbaev A., Formal Matrices, Springer-Verlag, Berlin, 2017

[25] Krylov P. A., Tuganbaev A. A., “Automorphism groups of formal matrix rings”, J. Math. Sci., 258:2 (2021), 222–249 | DOI

[26] Li Y., Wei F., “Semi-centralizing maps of generalized matrix algebras”, Lin. Algebra Appl., 436:5 (2012), 1122–1153 | DOI

[27] Li Y., Wei F., Fošner A., “$k$-commuting mappings of generalized matrix algebras”, Period. Math. Hungar., 79:1 (2019), 50–77 | DOI

[28] Rosenberg A., Zelinsky D., “Automorphisms of separable algebras”, Pac. J. Math., 11:3 (1961), 1109–1117 | DOI

[29] Xiao Z., Wei F., “Commuting mappings of generalized matrix algebras”, Lin. Algebra Appl., 433:11-12 (2010), 2178–2197 | DOI

[30] Xiao Z., Wei F., “Commuting traces and Lie isomorphisms on generalized matrix algebras”, Operators Matr., 8:3 (2014), 821–847 | DOI