Automorphisms of matrix rings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 16-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the automorphism groups of algebras of formal matrices. We also consider automorphisms of ordinary matrix algebras (in particular, algebras of triangular matrices).
Mots-clés : algebra of formal matrices, automorphism.
Keywords: algebra of triangular matrices
@article{INTO_2023_219_a1,
     author = {P. A. Krylov and A. Tuganbaev},
     title = {Automorphisms of matrix rings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--38},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - A. Tuganbaev
TI  - Automorphisms of matrix rings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 16
EP  - 38
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/
LA  - ru
ID  - INTO_2023_219_a1
ER  - 
%0 Journal Article
%A P. A. Krylov
%A A. Tuganbaev
%T Automorphisms of matrix rings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 16-38
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/
%G ru
%F INTO_2023_219_a1
P. A. Krylov; A. Tuganbaev. Automorphisms of matrix rings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 16-38. http://geodesic.mathdoc.fr/item/INTO_2023_219_a1/

[1] Abyzov A. N., Tapkin D. T., “Koltsa formalnykh matrits i ikh izomorfizmy”, Sib. mat. zh., 56:6 (2015), 1199–1214 | DOI | MR

[2] Abyzov A. N., Tapkin D. T., “O nekotorykh klassakh kolets formalnykh matrits”, Izv. vuzov. Mat., 2015, no. 3, 3–14

[3] Krylov P. A., “Afinnye gruppy modulei i ikh avtomorfizmy”, Algebra i logika., 40:1 (2001), 60–82 | MR | Zbl

[4] Krylov P. A., Norbosambuev Ts. D., “Avtomorfizmy algebr formalnykh matrits”, Sib. mat. zh., 59:5 (2018), 1116–1127 | DOI

[5] Krylov P. A., Norbosambuev Ts. D., “Gruppa avtomorfizmov odnogo klassa algebr formalnykh matrits”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 2018, no. 53, 16–21 | DOI

[6] Levchuk V. M., “Avtomorfizmy nekotorykh nilpotentnykh matrichnykh grupp i kolets”, Dokl. AN SSSR., 222:6 (1975), 1279–1282 | MR | Zbl

[7] Tapkin D. T., “Koltsa formalnykh matrits i obobschenie algebry intsidentnosti”, Chebyshev. sb., 16:3 (2015), 442–449

[8] Tapkin D. T., “Izomorfizmy kolets intsidentnosti formalnykh matrits”, Izv. vuzov. Mat., 2017, no. 12, 84–91

[9] Tapkin D. T., “Izomorfizmy kolets formalnykh matrits s nulevymi idealami sleda”, Sib. mat. zh., 59:3 (2018), 659–675 | DOI

[10] Ánh P. N., van Wyk L., “Automorphism groups of generalized triangular matrix rings”, Lin. Algebra Appl., 434:4 (2011), 1018–1026 | DOI

[11] Ánh P. N., van Wyk L., “Isomorphisms between strongly triangular matrix rings”, Lin. Algebra Appl., 438:11 (2013), 4374–4381 | DOI

[12] Barker G. P., “Automorphism groups of algebras of triangular matrices”, Lin. Algebra Appl., 121:C (1989), 207–215 | DOI

[13] Bass H., Algebraic $K$-Theory, New York, 1968

[14] Birkenmeier G. F., Heatherly H. E., Kim J. Y., Park J. K., “Triangular Matrix Representations”, J. Algebra., 230:2 (2000), 558–595 | DOI

[15] Boboc C., Dǎscǎlescu S., van Wyk L., “Isomorphisms between Morita context rings”, Lin. Multilin. Algebra., 60:5 (2012), 545–563 | DOI

[16] Faith C. C., Algebra: Rings, Modules and Categories, Springer-Verlag, Berlin, 1973

[17] Haefner J., HolcombT., “The Picard group of a structural matrix algebra”, Lin. Algebra Appl., 304:1-3 (2000), 69–101 | DOI

[18] Isaacs I. M., “Automorphisms of matrix algebras over commutative rings”, Lin. Algebra Appl., 31C (1980), 215–231 | DOI

[19] Jøndrup S., “The group of automorphisms of certain subalgebras of matrix algebras”, J. Algebra., 141 (1991), 106–114

[20] Jøndrup S., “Automorphisms and derivations of upper triangular matrix rings”, Lin. Algebra Appl., 221C (1995), 205–218 | DOI

[21] Kezlan T. P., “A note on algebra automorphisms of triangular matrices over commutative rings”, Lin. Algebra Appl., 135C (1990), 181–184 | DOI

[22] Khazal R., Dǎscǎlescu S., van Wyk L., “Isomorphism of generalized triangular matrix-rings and recovery of tiles”, Int. J. Math. Math. Sci., 2003:9 (2003), 533–538 | DOI

[23] Koppinen M., “Three automorphism theorems for triangular matrix algebras”, Lin. Algebra Appl., 245 (1996), 295–304 | DOI

[24] Krylov P., Tuganbaev A., Formal Matrices, Springer-Verlag, Berlin, 2017

[25] Krylov P. A., Tuganbaev A. A., “Automorphism groups of formal matrix rings”, J. Math. Sci., 258:2 (2021), 222–249 | DOI

[26] Li Y., Wei F., “Semi-centralizing maps of generalized matrix algebras”, Lin. Algebra Appl., 436:5 (2012), 1122–1153 | DOI

[27] Li Y., Wei F., Fošner A., “$k$-commuting mappings of generalized matrix algebras”, Period. Math. Hungar., 79:1 (2019), 50–77 | DOI

[28] Rosenberg A., Zelinsky D., “Automorphisms of separable algebras”, Pac. J. Math., 11:3 (1961), 1109–1117 | DOI

[29] Xiao Z., Wei F., “Commuting mappings of generalized matrix algebras”, Lin. Algebra Appl., 433:11-12 (2010), 2178–2197 | DOI

[30] Xiao Z., Wei F., “Commuting traces and Lie isomorphisms on generalized matrix algebras”, Operators Matr., 8:3 (2014), 821–847 | DOI