Multiplications on torsion-free groups of finite rank
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiplication on an Abelian group $G$ is an arbitrary homomorphism $\mu\colon G\otimes G\rightarrow G$. The set $\operatorname{Mult}G$ of all multiplications on an Abelian group $G$ is itself an Abelian group with respect to addition. In this paper, we discuss the multiplication groups of groups from the class $\mathcal{A}_0$ of all Abelian block-rigid, almost completely decomposable groups of ring type with cyclic regulatory factors. We show that for any group $G$ from the class $\mathcal{A}_0$, the group $\operatorname{Mult}G$ also belongs to this class. The rank, regulator, regulator index, almost isomorphism invariants, principal decomposition, and standard representation of the group $\operatorname{Mult}G$ for $G\in \mathcal{A}_0$ are described.
Keywords: Abelian group, almost completely decomposable Abelian group, ring on an Abelian group
Mots-clés : multiplication group of an Abelian group.
@article{INTO_2023_219_a0,
     author = {E. I. Kompantseva and A. Tuganbaev},
     title = {Multiplications on torsion-free groups of finite rank},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - A. Tuganbaev
TI  - Multiplications on torsion-free groups of finite rank
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 15
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/
LA  - ru
ID  - INTO_2023_219_a0
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A A. Tuganbaev
%T Multiplications on torsion-free groups of finite rank
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-15
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/
%G ru
%F INTO_2023_219_a0
E. I. Kompantseva; A. Tuganbaev. Multiplications on torsion-free groups of finite rank. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/

[1] Andruszkiewicz R. R., Woronowicz M., “On additive groups of associative and commutative rings”, Quaest. Math., 40:4 (2017), 527–537

[2] Beaumont R. A., Pierce R. S., “Torsion-free rings”, Ill. J. Math., 5 (1961), 61–98

[3] Blagoveshchenskaya E. A., Mader A., “Decompositions of almost completely decomposable groups”, Contemp. Math. Am. Math. Soc., 171 (1994), 21–36

[4] Burkhardt R., “On a special class of almost completely decomposable groups”, CISM Courses Lect. Notes., 287 (1984), 141–150

[5] Dugas M., Oxford E., “Near isomorphism invariants for a class of almost completely decomposable groups”, Proc. Curacao Conf. “Abelian Groups-1991”, Marcel Dekker, 1993, 129–150

[6] Feigelstock S., “Additive groups of rings whose subrings are ideals”, Bull. Austr. Math. Soc., 55 (1997), 477–481

[7] Feigelstock S., “Additive groups of commutative rings”, Quaest. Math., 23 (2000), 241–245

[8] Fuchs L., Infinite Abelian Groups. Vol. 2, Academic Press, New York–London, 1973

[9] Fuchs L., Abelian Groups, Springer, 2015

[10] Gardner B. J., “Rings on completely decomposable torsion-free Abelian groups”, Comment. Math. Univ. Carol., 15:3 (1974), 381–392

[11] Jackett D. R., “Rings on certain mixed Abelian groups”, Pac. J. Math., 98:2 (1982), 365–373

[12] Kompantseva E. I., “Rings on almost completely decomposable abelian groups”, J. Math. Sci., 163:6 (2009), 688–693

[13] Kompantseva E. I., “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247

[14] Kompantseva E. I., “Abelian $dqt$-groups and rings on them”, J. Math. Sci., 206:5 (2015), 494–504

[15] Kompantseva E. I., Tuganbaev A. A., “Rings on Abelian torsion-free groups of finite rank”, Beitr. Algebra Geom., 63 (2022), 267–285 | DOI

[16] Kompantseva E. I., Tuganbaev A. A., “Absolute ideals of Murley groups”, Beitr. Algebra Geom., 63 (2022), 853–866 | DOI

[17] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Springer, Dordrecht–-Boston–-London, 2003

[18] Lady E. L., “Almost completely decomposable torsion-free abelian groups”, Proc. Am. Math. Soc., 45 (1974), 41–47

[19] Mader A., Almost Completely Decomposable Abelian Groups, Gordon and Breach, Amsterdam, 2000