Multiplications on torsion-free groups of finite rank
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
A multiplication on an Abelian group $G$ is an arbitrary homomorphism $\mu\colon G\otimes G\rightarrow G$. The set $\operatorname{Mult}G$ of all multiplications on an Abelian group $G$ is itself an Abelian group with respect to addition. In this paper, we discuss the multiplication groups of groups from the class $\mathcal{A}_0$ of all Abelian block-rigid, almost completely decomposable groups of ring type with cyclic regulatory factors. We show that for any group $G$ from the class $\mathcal{A}_0$, the group $\operatorname{Mult}G$ also belongs to this class. The rank, regulator, regulator index, almost isomorphism invariants, principal decomposition, and standard representation of the group $\operatorname{Mult}G$ for $G\in \mathcal{A}_0$ are described.
Keywords:
Abelian group, almost completely decomposable Abelian group, ring on an Abelian group
Mots-clés : multiplication group of an Abelian group.
Mots-clés : multiplication group of an Abelian group.
@article{INTO_2023_219_a0,
author = {E. I. Kompantseva and A. Tuganbaev},
title = {Multiplications on torsion-free groups of finite rank},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--15},
publisher = {mathdoc},
volume = {219},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/}
}
TY - JOUR AU - E. I. Kompantseva AU - A. Tuganbaev TI - Multiplications on torsion-free groups of finite rank JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 3 EP - 15 VL - 219 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/ LA - ru ID - INTO_2023_219_a0 ER -
%0 Journal Article %A E. I. Kompantseva %A A. Tuganbaev %T Multiplications on torsion-free groups of finite rank %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 3-15 %V 219 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/ %G ru %F INTO_2023_219_a0
E. I. Kompantseva; A. Tuganbaev. Multiplications on torsion-free groups of finite rank. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/