Multiplications on torsion-free groups of finite rank
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiplication on an Abelian group $G$ is an arbitrary homomorphism $\mu\colon G\otimes G\rightarrow G$. The set $\operatorname{Mult}G$ of all multiplications on an Abelian group $G$ is itself an Abelian group with respect to addition. In this paper, we discuss the multiplication groups of groups from the class $\mathcal{A}_0$ of all Abelian block-rigid, almost completely decomposable groups of ring type with cyclic regulatory factors. We show that for any group $G$ from the class $\mathcal{A}_0$, the group $\operatorname{Mult}G$ also belongs to this class. The rank, regulator, regulator index, almost isomorphism invariants, principal decomposition, and standard representation of the group $\operatorname{Mult}G$ for $G\in \mathcal{A}_0$ are described.
Keywords: Abelian group, almost completely decomposable Abelian group, ring on an Abelian group
Mots-clés : multiplication group of an Abelian group.
@article{INTO_2023_219_a0,
     author = {E. I. Kompantseva and A. Tuganbaev},
     title = {Multiplications on torsion-free groups of finite rank},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - A. Tuganbaev
TI  - Multiplications on torsion-free groups of finite rank
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 15
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/
LA  - ru
ID  - INTO_2023_219_a0
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A A. Tuganbaev
%T Multiplications on torsion-free groups of finite rank
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-15
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/
%G ru
%F INTO_2023_219_a0
E. I. Kompantseva; A. Tuganbaev. Multiplications on torsion-free groups of finite rank. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2023_219_a0/