Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a9, author = {S. S. Postnov}, title = {Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {81--96}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/} }
TY - JOUR AU - S. S. Postnov TI - Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 81 EP - 96 VL - 217 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/ LA - ru ID - INTO_2022_217_a9 ER -
%0 Journal Article %A S. S. Postnov %T Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 81-96 %V 217 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/ %G ru %F INTO_2022_217_a9
S. S. Postnov. Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 81-96. http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/
[1] Butkovskii A. G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975
[2] Butkovskii A. G., Fazovye portrety upravlyaemykh dinamicheskikh sistem, Nauka, M., 1985
[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968
[4] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003
[5] Postnov S. S., “$l$-Problema momentov i optimalnoe upravlenie dlya sistem, modeliruemykh uravneniyami drobnogo poryadka s mnogoparametricheskimi i «nesingulyarnymi» proizvodnymi”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 199 (2021), 86–116 | DOI
[6] Postnov S. S., “O postanovke i razreshimosti $l$-problemy momentov dlya sistem drobnogo poryadka”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 206 (2022), 107–124 | DOI
[7] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[8] Atangana A., Baleanu D., “New fractional derivatives with non-local and non-singular kernel”, Thermal Sci., 20:2 (2016), 763–769
[9] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 73–85
[10] Garra R., Gorenflo R., Polito F., Tomovski Z., “Hilfer–Prabhakar derivatives and some applications”, Appl. Math. Comput., 242 (2014), 576–589
[11] Kubyshkin V. A., Postnov S. S., “Optimal control problem investigation for linear time-invariant systems of fractional order with lumped parameters described by equations with Riemann–Liouville derivative”, J. Control Sci. Eng., 2016 (2016), 4873083
[12] Losada J., Nieto J. J., “Properties of a new fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 87–92
[13] Postnov S., “Optimal control problem for linear fractional-order systems, described by equations with Hadamard-type derivative”, J. Phys. Conf. Ser., 918 (2017), 012026
[14] Tarasov V. E., Fractional Dynamics, Springer, Berlin, 2010
[15] Zhang S., Hu L., Sun S., “The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo–Fabrizio derivative”, J. Nonlinear Sci. Appl., 11 (2018), 428–436