Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the phase dynamics of fractional linear systems with control. Two-dimensional systems with concentrated parameters are considered in most detail in the cases where the fractional differentiation operators in the governing equations are understood in the Caputo–Fabrizio sense. Systems modeled by equations with Atangana–Baleano and Prabhakara operators are also considered. We obtain and examine analytic solutions and boundary trajectories of systems, which determine domains of admissible values of the phase coordinates. The statement of the moment $l$-problem for the systems considered and its solvability are analyzed. An example of solving this problem in the case where the control is an essentially bounded function on a interval is given.
Keywords: fractional dynamical system, optimal control, fractional derivative, $l$-problem of moments.
@article{INTO_2022_217_a9,
     author = {S. S. Postnov},
     title = {Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/}
}
TY  - JOUR
AU  - S. S. Postnov
TI  - Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 81
EP  - 96
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/
LA  - ru
ID  - INTO_2022_217_a9
ER  - 
%0 Journal Article
%A S. S. Postnov
%T Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 81-96
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/
%G ru
%F INTO_2022_217_a9
S. S. Postnov. Features of the phase dynamics of fractional two-dimensional linear control systems for various differentiation operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 81-96. http://geodesic.mathdoc.fr/item/INTO_2022_217_a9/

[1] Butkovskii A. G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975

[2] Butkovskii A. G., Fazovye portrety upravlyaemykh dinamicheskikh sistem, Nauka, M., 1985

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[4] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003

[5] Postnov S. S., “$l$-Problema momentov i optimalnoe upravlenie dlya sistem, modeliruemykh uravneniyami drobnogo poryadka s mnogoparametricheskimi i «nesingulyarnymi» proizvodnymi”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 199 (2021), 86–116 | DOI

[6] Postnov S. S., “O postanovke i razreshimosti $l$-problemy momentov dlya sistem drobnogo poryadka”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 206 (2022), 107–124 | DOI

[7] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[8] Atangana A., Baleanu D., “New fractional derivatives with non-local and non-singular kernel”, Thermal Sci., 20:2 (2016), 763–769

[9] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 73–85

[10] Garra R., Gorenflo R., Polito F., Tomovski Z., “Hilfer–Prabhakar derivatives and some applications”, Appl. Math. Comput., 242 (2014), 576–589

[11] Kubyshkin V. A., Postnov S. S., “Optimal control problem investigation for linear time-invariant systems of fractional order with lumped parameters described by equations with Riemann–Liouville derivative”, J. Control Sci. Eng., 2016 (2016), 4873083

[12] Losada J., Nieto J. J., “Properties of a new fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 87–92

[13] Postnov S., “Optimal control problem for linear fractional-order systems, described by equations with Hadamard-type derivative”, J. Phys. Conf. Ser., 918 (2017), 012026

[14] Tarasov V. E., Fractional Dynamics, Springer, Berlin, 2010

[15] Zhang S., Hu L., Sun S., “The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo–Fabrizio derivative”, J. Nonlinear Sci. Appl., 11 (2018), 428–436