Delay effect and business cycles
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a mathematical model of macroeconomics known as “demand-supply” or “market model.” The classical version of this model has no cycles. We show that the introduction of a delay may lead to the appearance of periodic solutions, including stable solutions, and find the minimum value of such a delay. Our analysis is based on methods of the theory of dynamical systems with infinite-dimensional spaces of initial conditions. For periodic solutions detected, we obtain asymptotic formulas.
Keywords: model “supply-demand”, delay, stability, asymptotics.
Mots-clés : bifurcation
@article{INTO_2022_217_a5,
     author = {D. A. Kulikov},
     title = {Delay effect and business cycles},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a5/}
}
TY  - JOUR
AU  - D. A. Kulikov
TI  - Delay effect and business cycles
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 41
EP  - 50
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a5/
LA  - ru
ID  - INTO_2022_217_a5
ER  - 
%0 Journal Article
%A D. A. Kulikov
%T Delay effect and business cycles
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 41-50
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a5/
%G ru
%F INTO_2022_217_a5
D. A. Kulikov. Delay effect and business cycles. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 41-50. http://geodesic.mathdoc.fr/item/INTO_2022_217_a5/

[15] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005

[16] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[17] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR

[18] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR

[19] Kulikov A. N., “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 186 (2020), 122–131

[20] Kulikov A. N., Kulikov D. A., “Effekt zapazdyvaniya i ekonomicheskie tsikly”, Tavrich. vestn. inform. mat., 2 (2015), 87–100

[21] Kulikov A. N., Kulikov D. A., “Matematicheskie modeli rynka i effekt zapazdyvaniya”, Matematika v Yaroslavskom universitete, Yaroslavl, 2016, 132–151

[22] Kulikov D. A., “Ustoichivost i lokalnye bifurkatsii v modeli Solou s zapazdyvaniem”, Zh. Srednevolzh. mat. o-va., 20:2 (2018), 225–234

[23] Lebedev V. V., Lebedev K. V., Matematicheskoe modelirovanie nestatsionarnykh protsessov, eTest, M., 2011

[24] Bellman R., Cooke L., Differential-Difference Equations, Academic Press, London, 1963 | MR

[25] Bianca C., Guerrini L., “Existence of limit cycles in the Solow model with delayed-logistic populaion growth”, Scientific World J., 2014 (2014), 207806 | DOI

[26] Ferrara M., Guerrini L., Sodini M., “Nonlinear dynamics in a Solow model with delay and non-convex technology”, Appl. Math. Comput., 228 (2014), 1–12 | MR

[27] Hale J., Theory of Functional Differential Equations, Springer-Verlag, Berlin, 1977 | MR

[28] Kulikov A., Kulikov D., Radin M., “Periodic cycles in the Solow model with a delay effect”, Math. Model. Anal., 24:2 (2019), 297–310 | DOI | MR

[29] Kulikov D. A., “About a mathematical model of market”, J. Phys. Conf. Ser., 788 (2017), 012024 | DOI

[30] Kulikov D. A., “The generalized Solow model”, J. Phys. Conf. Ser., 1205 (2019), 012033 | DOI

[31] Marsden J. E., McCraken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | MR

[32] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR

[33] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR