Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a5, author = {D. A. Kulikov}, title = {Delay effect and business cycles}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {41--50}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a5/} }
D. A. Kulikov. Delay effect and business cycles. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 41-50. http://geodesic.mathdoc.fr/item/INTO_2022_217_a5/
[15] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005
[16] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[17] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR
[18] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR
[19] Kulikov A. N., “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 186 (2020), 122–131
[20] Kulikov A. N., Kulikov D. A., “Effekt zapazdyvaniya i ekonomicheskie tsikly”, Tavrich. vestn. inform. mat., 2 (2015), 87–100
[21] Kulikov A. N., Kulikov D. A., “Matematicheskie modeli rynka i effekt zapazdyvaniya”, Matematika v Yaroslavskom universitete, Yaroslavl, 2016, 132–151
[22] Kulikov D. A., “Ustoichivost i lokalnye bifurkatsii v modeli Solou s zapazdyvaniem”, Zh. Srednevolzh. mat. o-va., 20:2 (2018), 225–234
[23] Lebedev V. V., Lebedev K. V., Matematicheskoe modelirovanie nestatsionarnykh protsessov, eTest, M., 2011
[24] Bellman R., Cooke L., Differential-Difference Equations, Academic Press, London, 1963 | MR
[25] Bianca C., Guerrini L., “Existence of limit cycles in the Solow model with delayed-logistic populaion growth”, Scientific World J., 2014 (2014), 207806 | DOI
[26] Ferrara M., Guerrini L., Sodini M., “Nonlinear dynamics in a Solow model with delay and non-convex technology”, Appl. Math. Comput., 228 (2014), 1–12 | MR
[27] Hale J., Theory of Functional Differential Equations, Springer-Verlag, Berlin, 1977 | MR
[28] Kulikov A., Kulikov D., Radin M., “Periodic cycles in the Solow model with a delay effect”, Math. Model. Anal., 24:2 (2019), 297–310 | DOI | MR
[29] Kulikov D. A., “About a mathematical model of market”, J. Phys. Conf. Ser., 788 (2017), 012024 | DOI
[30] Kulikov D. A., “The generalized Solow model”, J. Phys. Conf. Ser., 1205 (2019), 012033 | DOI
[31] Marsden J. E., McCraken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | MR
[32] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR
[33] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR