Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_216_a8, author = {S. S. Mamonov and I. V. Ionova and A. O. Harlamova}, title = {Hidden synchronization of phase-locked loops with nonlinear delay}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {88--96}, publisher = {mathdoc}, volume = {216}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a8/} }
TY - JOUR AU - S. S. Mamonov AU - I. V. Ionova AU - A. O. Harlamova TI - Hidden synchronization of phase-locked loops with nonlinear delay JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 88 EP - 96 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a8/ LA - ru ID - INTO_2022_216_a8 ER -
%0 Journal Article %A S. S. Mamonov %A I. V. Ionova %A A. O. Harlamova %T Hidden synchronization of phase-locked loops with nonlinear delay %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 88-96 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a8/ %G ru %F INTO_2022_216_a8
S. S. Mamonov; I. V. Ionova; A. O. Harlamova. Hidden synchronization of phase-locked loops with nonlinear delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 88-96. http://geodesic.mathdoc.fr/item/INTO_2022_216_a8/
[1] Besekerskii V. A., Popov E. P., Teoriya sistem avtomaticheskogo regulirovaniya, Nauka, M., 1972
[2] Kapranov M. V., Kuleshov V. N., Utkin G. M., Teoriya kolebanii v radiotekhnike, Nauka, M., 1984
[3] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR
[4] Mamonov S. S., “Dinamika sistemy chastotno-fazovoi avtopodstroiki chastoty s filtrami pervogo poryadka”, Vestn. Novosib. gos. un-ta. Ser. Mat. mekh. inform., 11:1 (2011), 70–81
[5] Mamonov S. S., Ionova I. V., Kharlamova A. O., “Matrichnye uravneniya sistem fazovoi sinkhronizatsii”, Chebyshevskii sb., 20:2 (2019), 244–258 | MR
[6] Mamonov S. S., Ionova I. V., Kharlamova A. O., “Prostranstvennye kharakteristiki tsiklov sistem differentsialnykh uravnenii”, Differentsialnye uravneniya i matematicheskoe modelirovanie. Vyp. 1, RGU im. S. A. Esenina, Ryazan, 2020, 39–45
[7] Mamonov S. S., Kharlamova A. O., “Vynuzhdennaya sinkhronizatsiya sistem fazovoi avtopodstroiki s zapazdyvaniem”, Vestn. Ryazan. gos. radiotekhn. un-ta., 2017, no. 62, 26–35
[8] Mamonov S. S., Kharlamova A. O., “Tsikly pervogo roda sistem s tsilindricheskim fazovym prostranstvom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 148 (2018), 83–92
[9] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Kolebatelno-vraschatelnye tsikly fazovoi sistemy differentsialnykh uravnenii”, Vestn. RAEN., 18:4 (2018), 51–57
[10] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Krivizna kolebatelnykh tsiklov fazovykh sistem”, Vestn. RAEN., 19:2 (2019), 105–110 | MR
[11] Kharlamova A. O., “Asinkhronnye rezhimy fazovykh sistem”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 148 (2018), 101–108
[12] Shakhgildyan V. V., Lyakhovkin A. A., Sistemy fazovoi avtopodstroiki chastoty, Svyaz, M., 1972