Some problems of convex analysis in the Lobachevsky space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 57-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The shadow problem in the Euclidean space was posed by G. Khudaiberganov in 1982. Its solution for dimensions ${>}2$ and various generalizations were obtained by a group of Ukrainian mathematicians led by Yu. B. Zelinsky in 2015. In this paper, we consider some variations of such problems and their generalizations in the Lobachevsky space and a closed lighting problem for the Lobachevsky space. In the Euclidean space, this problem was posed by V. G. Boltyansky.
Keywords: Lobachevsky space, generalized convexity, shadow problem, lighting problem, sphere, ball
Mots-clés : horocycle.
@article{INTO_2022_216_a5,
     author = {A. V. Kostin and N. N. Kostina},
     title = {Some problems of convex analysis in the {Lobachevsky} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/}
}
TY  - JOUR
AU  - A. V. Kostin
AU  - N. N. Kostina
TI  - Some problems of convex analysis in the Lobachevsky space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 57
EP  - 65
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/
LA  - ru
ID  - INTO_2022_216_a5
ER  - 
%0 Journal Article
%A A. V. Kostin
%A N. N. Kostina
%T Some problems of convex analysis in the Lobachevsky space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 57-65
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/
%G ru
%F INTO_2022_216_a5
A. V. Kostin; N. N. Kostina. Some problems of convex analysis in the Lobachevsky space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 57-65. http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/