Some problems of convex analysis in the Lobachevsky space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The shadow problem in the Euclidean space was posed by G. Khudaiberganov in 1982. Its solution for dimensions ${>}2$ and various generalizations were obtained by a group of Ukrainian mathematicians led by Yu. B. Zelinsky in 2015. In this paper, we consider some variations of such problems and their generalizations in the Lobachevsky space and a closed lighting problem for the Lobachevsky space. In the Euclidean space, this problem was posed by V. G. Boltyansky.
Keywords: Lobachevsky space, generalized convexity, shadow problem, lighting problem, sphere, ball
Mots-clés : horocycle.
@article{INTO_2022_216_a5,
     author = {A. V. Kostin and N. N. Kostina},
     title = {Some problems of convex analysis in the {Lobachevsky} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/}
}
TY  - JOUR
AU  - A. V. Kostin
AU  - N. N. Kostina
TI  - Some problems of convex analysis in the Lobachevsky space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 57
EP  - 65
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/
LA  - ru
ID  - INTO_2022_216_a5
ER  - 
%0 Journal Article
%A A. V. Kostin
%A N. N. Kostina
%T Some problems of convex analysis in the Lobachevsky space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 57-65
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/
%G ru
%F INTO_2022_216_a5
A. V. Kostin; N. N. Kostina. Some problems of convex analysis in the Lobachevsky space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 57-65. http://geodesic.mathdoc.fr/item/INTO_2022_216_a5/

[1] Boltyanskii V. G., Gokhberg I. Ts., Teoremy i zadachi kombinatornoi geometrii, Nauka, M., 1965 | MR

[2] Vygovskaya I. Yu., Zelinskii Yu. B., Stefanchuk M. V., “Obobschenno vypuklye mnozhestva i zadacha o teni”, Ukr. mat. zh., 67:12 (2015), 1658–1666 | MR

[3] Zelinskii Yu. B., Vygovskaya I. Yu., Dakkhil Kh. K., “Zadacha o teni i smezhnye zadachi”, Proc. Int. Geom. Center., 9:3 (2016), 50–58 | MR

[4] Kostin A. V., Kostina N. N., “Zadacha Tammesa i kontaktnoe chislo sfery v prostranstvakh postoyannoi krivizny”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 182 (2020), 45–50 | MR

[5] Kostina E. A., Kostina N. N., “Metricheskie kharakteristiki giperbolicheskikh mnogougolnikov i mnogogrannikov”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 169 (2019), 31–38

[6] Nestorovich N. M., Geometricheskie postroeniya v ploskosti Lobachevskogo, GITTL, M.-L., 1951 | MR

[7] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[8] Khudaiberganov G., “Ob odnorodno-polinomialno vypukloi obolochke ob'edineniya sharov”, Dep. v VINITI. — 21.02.1982. —No 1772-85

[9] Dakhil H. K., The shadows problems and mappings of fixed multiplicity, Ph.D., Kiev, 2017

[10] Dostert M., Kolpakov A., “Kissing number in non-Euclidean spaces of constant sectional curvature”, Math. Comput., 90 (2021), 2507–2525 | DOI | MR

[11] Kostin A. V., “Problem of shadow in the Lobachevskii space”, Ukr. Math. J., 70:11 (2019), 1758–1766 | DOI | MR

[12] Kostin A. V., “Some generalization of the shadow problem in the Lobachevsky space”, Ukr. Math. J., 73:1 (2021), 61–68 | DOI | MR

[13] Osipchuk T. M., “On semiconvexity of open sets with smooth boundary in the plane”, Proc. Int. Geom. Center., 12:4 (2019), 69–88 | DOI | MR