Elliptic problems in domains with degenerate singularities
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 50-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model elliptic pseudodifferential equation in Sobolev– Slobodetsky spaces in a reflex angle on the plane. Using the wave factorization, in the case of a unique solution, we study the situation where the aperture of the explementary angle tends to zero. We prove that this limit exists only if the right-hand side satisfies a certain additional condition and obtain this condition using the properties of singular integral operators.
Keywords: pseudodifferential equation, wave factorization, planar angle, singular integral, boundary condition.
Mots-clés : symbol, limit solution
@article{INTO_2022_216_a4,
     author = {V. B. Vasilev (Vasilyev) and Sh. Kutaiba},
     title = {Elliptic problems in domains with degenerate singularities},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--56},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a4/}
}
TY  - JOUR
AU  - V. B. Vasilev (Vasilyev)
AU  - Sh. Kutaiba
TI  - Elliptic problems in domains with degenerate singularities
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 50
EP  - 56
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a4/
LA  - ru
ID  - INTO_2022_216_a4
ER  - 
%0 Journal Article
%A V. B. Vasilev (Vasilyev)
%A Sh. Kutaiba
%T Elliptic problems in domains with degenerate singularities
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 50-56
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a4/
%G ru
%F INTO_2022_216_a4
V. B. Vasilev (Vasilyev); Sh. Kutaiba. Elliptic problems in domains with degenerate singularities. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 50-56. http://geodesic.mathdoc.fr/item/INTO_2022_216_a4/

[1] Vasilev V. B., Multiplikatory integralov Fure, psevdodifferentsialnye uravneniya, volnovaya faktorizatsiya, kraevye zadachi, URSS, M., 2010

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[4] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[5] Plamenevskii B. A., Psevdodifferentsialnye operatory na kusochno gladkikh mnogoobraziyakh, Tamara Rozhkovskaya, Novosibirsk, 2010

[6] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[7] Kutaiba Sh., Vasilyev V., “On solutions of certain limit boundary-value problems”, AIP Conf. Proc., 2293 (2020), 110006 | DOI | MR

[8] Mikhlin S. G., Prößdorf S., Singular Integral Operators, Akademie-Verlag, Berlin, 1986 | MR

[9] Nazaikinskii V., Schulze B.-W., Sternin B., The Localization Problem in Index Theory of Elliptic Operators, Birkhäuser/Springer, Basel, 2014 | MR

[10] Schulze B.-W., Sternin B., Shatalov V., Differential Equations on Singular Manifolds: Semiclassical Theory and Operator Algebras, Wiley-VCH, Berlin, 1998 | MR

[11] Vasilyev V. B., “Asymptotical analysis of singularities for pseudodifferential equations in canonical nonsmooth domains”, Integral Methods in Science and Engineering. Computational and Analytic Aspects, eds. Constanda C., Harris P. J., Birkhäuser, Boston, 2011, 379–390 | MR

[12] Vasilyev V. B., “On certain 3D limit boundary-value problem”, Lobachevskii J. Math., 41:5 (2020), 913–921 | DOI | MR