Cyclic spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 44-49
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider group algebras whose base groups are cyclic groups, prove a theorem on the multiplicativity of circulants for cyclic and anticyclic numbers, and describe geometric structures on linear spaces of cyclic and anticyclic algebras.
Mots-clés :
group algebras, cyclic rotations.
Keywords: algebras of cyclic numbers, algebras of anticyclic numbers, spaces with fundamental form
Keywords: algebras of cyclic numbers, algebras of anticyclic numbers, spaces with fundamental form
@article{INTO_2022_216_a3,
author = {I. M. Burlakov and M. P. Burlakov},
title = {Cyclic spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {44--49},
year = {2022},
volume = {216},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a3/}
}
I. M. Burlakov; M. P. Burlakov. Cyclic spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 44-49. http://geodesic.mathdoc.fr/item/INTO_2022_216_a3/
[1] Arnold V. I., Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2014
[2] Burlakov I. M., Burlakov M. P., Geometricheskie struktury lineinykh algebr, LAMBERT, 2017
[3] Burlakov M. P., Gamiltonovy algebry, Graf Press, M., 2006
[4] Burlakov M. P., Burlakov I. M., Guseva N. I., Ocherki ob algebrakh tsiklicheskikh chisel, Kim, M., 2020
[5] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo KGU, Kazan, 1985 | MR
[6] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, Nauka, M., 1967 | MR
[7] Skopets Z. A., Geometricheskie miniatyury, Prosveschenie, M., 1990 | MR
[8] Yaglom I. M., Printsip otnositelnosti Galileya i neevklidova geometriya, Nauka, M., 1969