Existence of a surface with prescribed geometric characteristics in the Galilean space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 116-123
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove the existence of a cyclic surface spanned by two given curved spaces, the existence of a complete cyclic surface with a given total curvature on the whole plane, and the existence of a surface with given coefficients of the first quadratic form and the curvature defect.
Keywords:
Galilean space, cyclic surface, geometric characteristics, curvature defect, isometry.
Mots-clés : reconstruction
Mots-clés : reconstruction
@article{INTO_2022_216_a11,
author = {B. M. Sultanov},
title = {Existence of a surface with prescribed geometric characteristics in the {Galilean} space},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {116--123},
publisher = {mathdoc},
volume = {216},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/}
}
TY - JOUR AU - B. M. Sultanov TI - Existence of a surface with prescribed geometric characteristics in the Galilean space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 116 EP - 123 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/ LA - ru ID - INTO_2022_216_a11 ER -
%0 Journal Article %A B. M. Sultanov %T Existence of a surface with prescribed geometric characteristics in the Galilean space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 116-123 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/ %G ru %F INTO_2022_216_a11
B. M. Sultanov. Existence of a surface with prescribed geometric characteristics in the Galilean space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 116-123. http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/