Existence of a surface with prescribed geometric characteristics in the Galilean space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 116-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the existence of a cyclic surface spanned by two given curved spaces, the existence of a complete cyclic surface with a given total curvature on the whole plane, and the existence of a surface with given coefficients of the first quadratic form and the curvature defect.
Keywords: Galilean space, cyclic surface, geometric characteristics, curvature defect, isometry.
Mots-clés : reconstruction
@article{INTO_2022_216_a11,
     author = {B. M. Sultanov},
     title = {Existence of a surface with prescribed geometric characteristics in the {Galilean} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {116--123},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/}
}
TY  - JOUR
AU  - B. M. Sultanov
TI  - Existence of a surface with prescribed geometric characteristics in the Galilean space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 116
EP  - 123
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/
LA  - ru
ID  - INTO_2022_216_a11
ER  - 
%0 Journal Article
%A B. M. Sultanov
%T Existence of a surface with prescribed geometric characteristics in the Galilean space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 116-123
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/
%G ru
%F INTO_2022_216_a11
B. M. Sultanov. Existence of a surface with prescribed geometric characteristics in the Galilean space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 116-123. http://geodesic.mathdoc.fr/item/INTO_2022_216_a11/

[1] Artikbaev A., Sokolov D. D., Geometriya v tselom v ploskom prostranstve-vremeni, Fan, Tashkent, 1991

[2] Kurbonov E. K., “O defekte krivizny poverkhnosti galileeva prostranstva”, Uzbek. mat. zh., 2000, no. 4, 26–29 | MR

[3] Kurbonov E. K., “O poverkhnosti galileeva prostranstva”, Uzbek. mat. zh., 2005, no. 1, 51–56 | MR

[4] Kurbonov E. K., Tsiklicheskie poverkhnosti galileeva prostranstva, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Tashkent, 2006

[5] Narmanov A. Ya., Differentsialnaya geometriya, Turon Ikbol, Tashkent, 2018

[6] Pogorelov A. V., Differentsialnaya geometriya, Nauka, M., 1974

[7] Poznyak E. G., Shikin E. V., Differentsialnaya geometriya, Izd-vo MGU, M., 1990

[8] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[9] Toponogov V. A., Rovenski V. Y., Differential Geometry of Curves and Surfaces, Birkhäuser, Boston, 2006 | MR