On the stability of the trivial solution to a periodic system of ordinary differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a normal system of ordinary differential equations whose right-hand side is periodic in the independent variable and locally smoothly depends on the small parameter and the phase variable. Using the properties of nonlinear approximations of the right and left monodromy operators, we prove conditions that guarantee the arbitrary smallness of perturbed solutions for sufficiently small initial values of the solutions and the parameter.
Keywords: differential equation, small parameter, stability, monodromy operator.
@article{INTO_2022_216_a0,
     author = {V. V. Abramov},
     title = {On the stability of the trivial solution to a periodic system of ordinary differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a0/}
}
TY  - JOUR
AU  - V. V. Abramov
TI  - On the stability of the trivial solution to a periodic system of ordinary differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 11
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a0/
LA  - ru
ID  - INTO_2022_216_a0
ER  - 
%0 Journal Article
%A V. V. Abramov
%T On the stability of the trivial solution to a periodic system of ordinary differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-11
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a0/
%G ru
%F INTO_2022_216_a0
V. V. Abramov. On the stability of the trivial solution to a periodic system of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 3-11. http://geodesic.mathdoc.fr/item/INTO_2022_216_a0/

[1] Abramov V. V., “Ustoichivost nulevogo resheniya periodicheskoi sistemy differentsialnykh uravnenii s malym parametrom”, Zh. Srednevolzh. mat. o-va., 12:4 (2010), 49–54 | MR

[2] Abramov V. V., “Dvustoronnyaya ustoichivost malogo periodicheskogo resheniya”, Vestn. RAEN., 14:5 (2014), 6–9

[3] Abramov V. V., “K zadache ob ustoichivosti malogo periodicheskogo resheniya”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 148 (2018), 3–9 | MR

[4] Abramov V. V., Belman S. A., Liskina E. Yu., “Ustoichivost po parametru pri postoyanno deistvuyuschikh vozmuscheniyakh”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 168 (2019), 8–13

[5] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[6] Malkin I. G., Teoriya ustoichivosti, Nauka, M., 1966 | MR

[7] Khapaev M. M., Usrednenie i ustoichivost dvizheniya, Nauka, M., 1986