Doubling of cyclic algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 52-57
Voir la notice du chapitre de livre
In this paper, we construct algebras generalizing the ring of complex quaternions and algebras of hypercomplex Clifford numbers. These algebras are obtained from the algebras of cyclic numbers by a modified doubling procedure. Also, we prove basic properties of these algebras, which are similar to the properties of quadratic hypercomplex numbers.
Keywords:
linear algebras, hypercomplex numbers, cyclic algebras, doubling procedure, compositional forms.
Mots-clés : quaternions
Mots-clés : quaternions
@article{INTO_2022_215_a4,
author = {V. M. Burlakov and M. P. Burlakov},
title = {Doubling of cyclic algebras},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {52--57},
year = {2022},
volume = {215},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a4/}
}
V. M. Burlakov; M. P. Burlakov. Doubling of cyclic algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 52-57. http://geodesic.mathdoc.fr/item/INTO_2022_215_a4/
[1] Arnold V. I., Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2014
[2] Burlakov M. P., Gamiltonovy algebry, Graf Press, M., 2006
[3] Burlakov M. P., Burlakov I. M., Guseva N. I., Ocherki ob algebrakh tsiklicheskikh chisel, Kim, M., 2020
[4] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[5] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M., 1955 | MR