Doubling of cyclic algebras
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 52-57
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct algebras generalizing the ring of complex quaternions and algebras of hypercomplex Clifford numbers. These algebras are obtained from the algebras of cyclic numbers by a modified doubling procedure. Also, we prove basic properties of these algebras, which are similar to the properties of quadratic hypercomplex numbers.
Keywords:
linear algebras, hypercomplex numbers, cyclic algebras, doubling procedure, compositional forms.
Mots-clés : quaternions
Mots-clés : quaternions
@article{INTO_2022_215_a4,
author = {V. M. Burlakov and M. P. Burlakov},
title = {Doubling of cyclic algebras},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {52--57},
publisher = {mathdoc},
volume = {215},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a4/}
}
TY - JOUR AU - V. M. Burlakov AU - M. P. Burlakov TI - Doubling of cyclic algebras JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 52 EP - 57 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_215_a4/ LA - ru ID - INTO_2022_215_a4 ER -
V. M. Burlakov; M. P. Burlakov. Doubling of cyclic algebras. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 52-57. http://geodesic.mathdoc.fr/item/INTO_2022_215_a4/