On the geometry of orbits of Killing vector fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a brief review of results in the theory of Killing vector fields defined on Riemannian manifolds of constant and nonnegative curvature.
Keywords: vector field, Killing vector field, orbifold, Lie bracket, Riemannian foliation.
Mots-clés : foliation
@article{INTO_2022_215_a2,
     author = {Zh. O. Aslonov},
     title = {On the geometry of orbits of {Killing} vector fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {215},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a2/}
}
TY  - JOUR
AU  - Zh. O. Aslonov
TI  - On the geometry of orbits of Killing vector fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 32
EP  - 39
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_215_a2/
LA  - ru
ID  - INTO_2022_215_a2
ER  - 
%0 Journal Article
%A Zh. O. Aslonov
%T On the geometry of orbits of Killing vector fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 32-39
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_215_a2/
%G ru
%F INTO_2022_215_a2
Zh. O. Aslonov. On the geometry of orbits of Killing vector fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 32-39. http://geodesic.mathdoc.fr/item/INTO_2022_215_a2/

[8] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1975

[9] Aslonov Zh. O., “Geometriya orbit vektornykh polei”, Dokl. AN RUz., 2011, no. 5, 5–7

[10] Aslonov Zh. O. Narmanov A., “Geometriya orbit vektornykh polei Killinga”, Uzbek. mat. zh., 2012, no. 2, 77–85 | MR

[11] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. mat. zh., 49:3 (2008), 497–514 | MR | Zbl

[12] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. 1, Nauka, M., 1981 | MR

[13] Narmanov A. Ya., “O differentsialnoi geometrii sloenii s osobennostyami”, Dokl. AN RUz., 1996, no. 3, 6–7 | Zbl

[14] Narmanov A. Ya., “O transversalnoi strukture mnozhestv upravlyaemosti simmetrichnykh sistem upravleniya”, Differ. uravn., 32:6 (1996), 780–783 | MR | Zbl

[15] Narmanov A. Ya., Struktura orbit sistem vektornykh polei i ikh predelnye svoistva, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, Tashkent, 1998

[16] Narmanov A. Ya., Saitova S. S., “O geometrii vektornykh polei Killinga”, Dokl. AN RUz., 2013, no. 5, 3–5

[17] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl

[18] Narmanov A. Ya., Aslonov J. O., On the geometry of the orbits of Killing vector fields, arXiv: 1203.3690 [math.DG] | MR

[19] Hermann R., “The differential geometry of foliations, I”, Ann. Math., 72 (1960), 445–457 | DOI | MR | Zbl

[20] Hermann R., “The differential geometry of foliations, II”, J. Math. Mech., 11 (1962), 305–315 | MR

[21] Molino P., “Orbit-like foliations”, Geometric Study of Foliations, World Scientific, Tokyo, 1993, 97–119 | MR

[22] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988 | MR | Zbl

[23] Morgan A., “Holonomy and metric properties of foliations in higher codimension”, Proc. Am. Math. Soc., 58 (1976), 255–261 | DOI | MR | Zbl

[24] Narmanov A. Ya., Qosimov O. Y., “On the geometry of the set of orbits of Killing vector fields on Euclidean space”, J. Geom. Symm. Phys., 55 (2020), 39–49 | DOI | MR | Zbl

[25] Reinhart B., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69 (1959), 119–132 | DOI | MR | Zbl

[26] Stefan P., “Accessible sets, orbits and foliations with singularities”, Proc. London Math. Soc. $(3)$., 29 (1974), 699–713 | DOI | MR | Zbl

[27] Tamura I., Topology of Foliations: An Introduction, Am. Math. Soc., 2006 | MR

[28] Tondeur P., Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988 | MR | Zbl

[29] Tursunov B. A., “On the geometry of Riemannian submersions over orbit of Killing vector fields”, Bull. Math. Stat. Res., 4:2 (2016), 102–107 | MR