Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_214_a9, author = {M. V. Shamolin}, title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. {I.} {Equations} of geodesics on the tangent bundle of a smooth $n$-dimensional manifold}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {82--106}, publisher = {mathdoc}, volume = {214}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a9/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 82 EP - 106 VL - 214 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_214_a9/ LA - ru ID - INTO_2022_214_a9 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 82-106 %V 214 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_214_a9/ %G ru %F INTO_2022_214_a9
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 82-106. http://geodesic.mathdoc.fr/item/INTO_2022_214_a9/