Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_214_a7, author = {B. A. Starkov}, title = {Fractal properties of binary matrices constructed using the generalized {Pascal's} triangle and applications}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {69--75}, publisher = {mathdoc}, volume = {214}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/} }
TY - JOUR AU - B. A. Starkov TI - Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 69 EP - 75 VL - 214 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/ LA - ru ID - INTO_2022_214_a7 ER -
%0 Journal Article %A B. A. Starkov %T Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 69-75 %V 214 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/ %G ru %F INTO_2022_214_a7
B. A. Starkov. Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 69-75. http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/
[1] Bondarenko B. A., Obobschennye treugolniki i piramidy Paskalya, ikh fraktali, grafy i prilozheniya, Fan, Tashkent, 1990
[2] Dorrer G. A., Matematicheskie modeli dinamiki lesnykh pozharov, Lesnaya promyshlennost, M., 1979
[3] Kim I., Dzhaggard D. L., “Fragmentarno-samopodobnye (fraktalnye) sluchainye reshetki”, Tr. In-ta inzh. elektrotekhn. elektron., 74 (1986), 124–126
[4] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000
[5] Nigmatulin P. N., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR
[6] Shur A. M., Kombinatorika slov, Izd-vo Uralskogo un-ta, Ekaterinburg, 2003
[7] Al-Kadi O.S, Watson D., “Texture analysis of aggressive and nonaggressive lung tumor CE CT images”, IEEE Trans. Biomed. Eng., 55:7 (2008), 1822–1830 | DOI
[8] Balagura A. A., Kuzmin O. V., “Generalised Pascal pyramids and their reciprocals”, Discr. Math. Appl., 17:6 (2007), 619–628 | MR | Zbl
[9] Dubuc B., Quiniou J., Roques-Carmes C., Tricot C., Zucker S., “Evaluating the fractal dimension of profiles”, Phys. Rev. A., 39:3 (1989), 1500–1512 | DOI | MR
[10] Fulkerson D. R., “Zero-one matrices with zero trace”, Pac. J. Math., 10 (1960), 831–836 | DOI | MR | Zbl
[11] King R. D., “Characterization of atrophic changes in the cerebral cortex using fractal dimensional analysis”, Brain Imaging Behav., 3:2 (2009), 154–166 | DOI
[12] Kuzmin O. V., Balagura A. A., Kuzmina V. V., Khudonogov I. A., “Partially ordered sets and combinatory objects of the pyramidal structure”, Adv. Appl. Discr. Math., 20:2 (2019), 229–236
[13] Kuzmin O. V., Seregina M. V., “Plane sections of the generalized Pascal pyramid and their interpretations”, Discr. Math. Appl., 20:4 (2010), 377–389 | MR | Zbl
[14] Kuzmin O. V., Starkov B. A., “Application of hierarchical structures based on binary matrices with the generalized arithmetic of Pascal's triangle in route building problems”, J. Phys. Conf. Ser., 1847 (2021), 012030 | DOI
[15] Mandelbrot B. B., Fractals: Form, Chance and Dimension, Echo Point Books Media, 2020 | MR
[16] Richardson L. F., “The problem of contiguity: an appendix to statistics of deadly quarrels”, Gen. Syst. Yearbook., 6 (1961), 139–187
[17] Ryser H. J., “Matrices of zeros and ones”, Bull. Am. Math. Soc., 66 (1960), 442–464 | DOI | MR | Zbl
[18] Wolfram S., “Geometry of binomial coefficients”, Am. Math. Month., 91 (1984), 566–571 | DOI | MR | Zbl