Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 69-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe a method for composing binary matrices based on the generalization of Pascal's triangle. The method of parameterization of these binary matrices by choosing certain generatrices is discussed and the properties of this construction are examined. We also present a well-known method for constructing a binary matrix by reducing the Pascal triangle by a simple or composite modulus and compare it with the method proposed in this paper. The fractal properties of these binary matrices are considered, and possible applications of fractal properties are presented.
Keywords: combinatorial analysis, generalized Pascal's pyramid, recurrent property
Mots-clés : Pascal's triangle, fractal, fractal dimension.
@article{INTO_2022_214_a7,
     author = {B. A. Starkov},
     title = {Fractal properties of binary matrices constructed using the generalized {Pascal's} triangle and applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--75},
     publisher = {mathdoc},
     volume = {214},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/}
}
TY  - JOUR
AU  - B. A. Starkov
TI  - Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 69
EP  - 75
VL  - 214
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/
LA  - ru
ID  - INTO_2022_214_a7
ER  - 
%0 Journal Article
%A B. A. Starkov
%T Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 69-75
%V 214
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/
%G ru
%F INTO_2022_214_a7
B. A. Starkov. Fractal properties of binary matrices constructed using the generalized Pascal's triangle and applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 69-75. http://geodesic.mathdoc.fr/item/INTO_2022_214_a7/

[1] Bondarenko B. A., Obobschennye treugolniki i piramidy Paskalya, ikh fraktali, grafy i prilozheniya, Fan, Tashkent, 1990

[2] Dorrer G. A., Matematicheskie modeli dinamiki lesnykh pozharov, Lesnaya promyshlennost, M., 1979

[3] Kim I., Dzhaggard D. L., “Fragmentarno-samopodobnye (fraktalnye) sluchainye reshetki”, Tr. In-ta inzh. elektrotekhn. elektron., 74 (1986), 124–126

[4] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000

[5] Nigmatulin P. N., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR

[6] Shur A. M., Kombinatorika slov, Izd-vo Uralskogo un-ta, Ekaterinburg, 2003

[7] Al-Kadi O.S, Watson D., “Texture analysis of aggressive and nonaggressive lung tumor CE CT images”, IEEE Trans. Biomed. Eng., 55:7 (2008), 1822–1830 | DOI

[8] Balagura A. A., Kuzmin O. V., “Generalised Pascal pyramids and their reciprocals”, Discr. Math. Appl., 17:6 (2007), 619–628 | MR | Zbl

[9] Dubuc B., Quiniou J., Roques-Carmes C., Tricot C., Zucker S., “Evaluating the fractal dimension of profiles”, Phys. Rev. A., 39:3 (1989), 1500–1512 | DOI | MR

[10] Fulkerson D. R., “Zero-one matrices with zero trace”, Pac. J. Math., 10 (1960), 831–836 | DOI | MR | Zbl

[11] King R. D., “Characterization of atrophic changes in the cerebral cortex using fractal dimensional analysis”, Brain Imaging Behav., 3:2 (2009), 154–166 | DOI

[12] Kuzmin O. V., Balagura A. A., Kuzmina V. V., Khudonogov I. A., “Partially ordered sets and combinatory objects of the pyramidal structure”, Adv. Appl. Discr. Math., 20:2 (2019), 229–236

[13] Kuzmin O. V., Seregina M. V., “Plane sections of the generalized Pascal pyramid and their interpretations”, Discr. Math. Appl., 20:4 (2010), 377–389 | MR | Zbl

[14] Kuzmin O. V., Starkov B. A., “Application of hierarchical structures based on binary matrices with the generalized arithmetic of Pascal's triangle in route building problems”, J. Phys. Conf. Ser., 1847 (2021), 012030 | DOI

[15] Mandelbrot B. B., Fractals: Form, Chance and Dimension, Echo Point Books Media, 2020 | MR

[16] Richardson L. F., “The problem of contiguity: an appendix to statistics of deadly quarrels”, Gen. Syst. Yearbook., 6 (1961), 139–187

[17] Ryser H. J., “Matrices of zeros and ones”, Bull. Am. Math. Soc., 66 (1960), 442–464 | DOI | MR | Zbl

[18] Wolfram S., “Geometry of binomial coefficients”, Am. Math. Month., 91 (1984), 566–571 | DOI | MR | Zbl