On the class of polynomially stable Boolean functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 37-43

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic properties of polynomially stable Boolean functions are examined. We prove that any polynomially stable function can be represented as the sum of terms that are nonrepetitive in an elementary basis. Relationships between polynomially stable and symmetric Boolean functions are discussed and a criterion for polynomial stability is proved.
Keywords: operator for Boolean functions, Zhegalkin polynomial, repetition-free formula, polynomial stability, symmetric Boolean function, weight of a binary set.
@article{INTO_2022_214_a3,
     author = {O. V. Zubkov},
     title = {On the class of polynomially stable {Boolean} functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {214},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a3/}
}
TY  - JOUR
AU  - O. V. Zubkov
TI  - On the class of polynomially stable Boolean functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 37
EP  - 43
VL  - 214
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_214_a3/
LA  - ru
ID  - INTO_2022_214_a3
ER  - 
%0 Journal Article
%A O. V. Zubkov
%T On the class of polynomially stable Boolean functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 37-43
%V 214
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_214_a3/
%G ru
%F INTO_2022_214_a3
O. V. Zubkov. On the class of polynomially stable Boolean functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 37-43. http://geodesic.mathdoc.fr/item/INTO_2022_214_a3/