On the class of polynomially stable Boolean functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 37-43
Cet article a éte moissonné depuis la source Math-Net.Ru
The basic properties of polynomially stable Boolean functions are examined. We prove that any polynomially stable function can be represented as the sum of terms that are nonrepetitive in an elementary basis. Relationships between polynomially stable and symmetric Boolean functions are discussed and a criterion for polynomial stability is proved.
Keywords:
operator for Boolean functions, Zhegalkin polynomial, repetition-free formula, polynomial stability, symmetric Boolean function, weight of a binary set.
@article{INTO_2022_214_a3,
author = {O. V. Zubkov},
title = {On the class of polynomially stable {Boolean} functions},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {37--43},
year = {2022},
volume = {214},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a3/}
}
O. V. Zubkov. On the class of polynomially stable Boolean functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 37-43. http://geodesic.mathdoc.fr/item/INTO_2022_214_a3/
[1] Zubkov O. V., “O klasse polinomialno ustoichivykh bulevykh funktsii i ikh svoistvakh”, Mat. 5 Rossiiskoi shkoly-seminara «Sintaksis i semantika logicheskikh sistem» (8–12 avgusta 2017, Ulan-Ude), Izd-vo BGU, Ulan-Ude, 2017, 87–91
[2] Zubkov O. V., “Predstavlenie polinomialno ustoichivykh funktsii summami bespovtornykh v elementarnom bazise slagaemykh”, Mat. 6 Mezhdunar. shkoly-seminara «Sintaksis i semantika logicheskikh sistem» (11–16 avgusta 2019, Khankh, Mongoliya), Izd-vo IGU, Irkutsk, 2019, 48–52
[3] Sloane N. J. A., Plouffe S., The encyclopedia of integer sequences, Academic Press, San Diego, 1995 | MR | Zbl