Combinatorial polynomials and enumeration of trees
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 21-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, enumeration properties of combinatorial composition polynomials that generalize B-polynomials are used for the generalized enumeration of the set of trees.
Keywords: combinatorial polynomial, tree, enumeration of trees.
@article{INTO_2022_214_a1,
     author = {A. A. Balagura and O. V. Kuz'min},
     title = {Combinatorial polynomials and enumeration of trees},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {214},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a1/}
}
TY  - JOUR
AU  - A. A. Balagura
AU  - O. V. Kuz'min
TI  - Combinatorial polynomials and enumeration of trees
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 21
EP  - 29
VL  - 214
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_214_a1/
LA  - ru
ID  - INTO_2022_214_a1
ER  - 
%0 Journal Article
%A A. A. Balagura
%A O. V. Kuz'min
%T Combinatorial polynomials and enumeration of trees
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 21-29
%V 214
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_214_a1/
%G ru
%F INTO_2022_214_a1
A. A. Balagura; O. V. Kuz'min. Combinatorial polynomials and enumeration of trees. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 21-29. http://geodesic.mathdoc.fr/item/INTO_2022_214_a1/

[1] Balagura A. A., Kuzmin O. V., “Perechislitelnye svoistva kombinatornykh polinomov razbienii”, Diskr. anal. issled. oper., 18:1 (2011), 3–14 | MR | Zbl

[2] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000

[3] Balagura A. A., Kuzmin O. V., “Encoding and decoding algorithms for unlabeled trees”, J. Phys. Conf. Ser., 1847 (2021), 012027 | DOI

[4] Balagura A. A., Kuzmin O. V., “Generalised Pascal pyramids and their reciprocals”, Discr. Math. Appl., 17:6 (2007), 619–628 | MR | Zbl

[5] Chow C.-O., Mansour T., “On the real-rootedness of generalized Touchard polynomials”, Appl. Math. Comput., 254 (2015), 204–209 | DOI | MR | Zbl

[6] Kuzmin O. V., Balagura A. A., Kuzmina V. V., Khudonogov I. A., “Partially ordered sets and combinatory objects of the pyramidal structure”, Adv. Appl. Discr. Math., 20:2 (2019), 229–236

[7] Kuzmin O. V., Leonova O. V., “On analytical conjugacy of Touchard polynomials and the polynomials quasi-orthogonal to them”, Discr. Math. Appl., 12:1 (2002), 97–103 | MR

[8] Kuzmin O. V., Seregina M. V., “Plane sections of the generalised Pascal pyramid and their interpretations”, Discr. Math. Appl., 20:4 (2010), 377–389 | MR | Zbl

[9] Kuzmin O. V., Starkov B. A., “Application of hierarchical structures based on binary matrices with the generalized arithmetic of Pascal's triangle in route building problems”, J. Phys. Conf. Ser., 1847 (2021), 012030 | DOI

[10] Marcellan F., Jabee S., Shadab M., “Analytical properties of Touchard-based hybrid polynomials via operational techniques”, Bull. Malaysian Math. Sci. Soc., 44:1 (2021), 223–242 | DOI | MR | Zbl

[11] Mihoubi M., Maamra M. S., “Touchard polynomials, partial Bell polynomials and polynomials of binomial type”, J. Phys. Conf. Ser., 14:3 (2011), 11.3.1 | MR | Zbl

[12] Stanley R., Enumerated Combinatorics. Vol. 2, Cambridge Univ. Press, Cambridge, 2005 | MR