Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_213_a9, author = {M. V. Shamolin}, title = {Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. {III.} {Systems} on the tangent bundles of smooth $n$-dimensional manifolds}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {96--109}, publisher = {mathdoc}, volume = {213}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/} }
TY - JOUR AU - M. V. Shamolin TI - Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 96 EP - 109 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/ LA - ru ID - INTO_2022_213_a9 ER -
%0 Journal Article %A M. V. Shamolin %T Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 96-109 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/ %G ru %F INTO_2022_213_a9
M. V. Shamolin. Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 96-109. http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/