Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 96-109
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is the third part of a survey on the integrability of systems with a large number $n$ of degrees of freedom (the first part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 211 (2022), pp. 41–74; the second part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 212 (2022), pp. 139–148). The review consists of three parts. In the first part, the primordial problem from the dynamics of a multidimensional rigid body placed in a nonconservative force field is described in detail. The second part is devoted to more general dynamical systems on the tangent bundles to the $n$-dimensional sphere. In this third part, we discuss dynamical systems on the tangent bundles to smooth manifolds of a sufficiently wide class. Theorems on sufficient conditions for the integrability of the considered dynamical systems in the class of transcendental functions are proved.
Keywords:
dynamical system with a large number of degrees of freedom, integrability, transcendental first integral.
@article{INTO_2022_213_a9,
author = {M. V. Shamolin},
title = {Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. {III.} {Systems} on the tangent bundles of smooth $n$-dimensional manifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {96--109},
publisher = {mathdoc},
volume = {213},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/}
}
TY - JOUR AU - M. V. Shamolin TI - Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 96 EP - 109 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/ LA - ru ID - INTO_2022_213_a9 ER -
%0 Journal Article %A M. V. Shamolin %T Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 96-109 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/ %G ru %F INTO_2022_213_a9
M. V. Shamolin. Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 96-109. http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/