Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 96-109

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the third part of a survey on the integrability of systems with a large number $n$ of degrees of freedom (the first part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 211 (2022), pp. 41–74; the second part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 212 (2022), pp. 139–148). The review consists of three parts. In the first part, the primordial problem from the dynamics of a multidimensional rigid body placed in a nonconservative force field is described in detail. The second part is devoted to more general dynamical systems on the tangent bundles to the $n$-dimensional sphere. In this third part, we discuss dynamical systems on the tangent bundles to smooth manifolds of a sufficiently wide class. Theorems on sufficient conditions for the integrability of the considered dynamical systems in the class of transcendental functions are proved.
Keywords: dynamical system with a large number of degrees of freedom, integrability, transcendental first integral.
@article{INTO_2022_213_a9,
     author = {M. V. Shamolin},
     title = {Systems with dissipation with a finite number of degrees of freedom: analysis and integrability.  {III.} {Systems} on the tangent bundles of smooth $n$-dimensional manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {96--109},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Systems with dissipation with a finite number of degrees of freedom: analysis and integrability.  III. Systems on the tangent bundles of smooth $n$-dimensional manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 96
EP  - 109
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/
LA  - ru
ID  - INTO_2022_213_a9
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Systems with dissipation with a finite number of degrees of freedom: analysis and integrability.  III. Systems on the tangent bundles of smooth $n$-dimensional manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 96-109
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/
%G ru
%F INTO_2022_213_a9
M. V. Shamolin. Systems with dissipation with a finite number of degrees of freedom: analysis and integrability.  III. Systems on the tangent bundles of smooth $n$-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 96-109. http://geodesic.mathdoc.fr/item/INTO_2022_213_a9/