On one approach to the optimization of state-linear controlled systems with terminal constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 89-95
Voir la notice de l'article provenant de la source Math-Net.Ru
In the class of state-linear optimal control problems with terminal constraints, we consider the problem of nonlocal improvement of an admissible control preserving all terminal constraints. We apply an approach based on solving a special system of functional equations. The corresponding system is interpreted as a fixed-point problem; to the solution of this problem we apply the theory of fixed points.
Keywords:
optimal control problem, nonlocal improvement, functional equation, fixed-point problem.
Mots-clés : terminal constraint
Mots-clés : terminal constraint
@article{INTO_2022_213_a8,
author = {D. O. Trunin},
title = {On one approach to the optimization of state-linear controlled systems with terminal constraints},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {89--95},
publisher = {mathdoc},
volume = {213},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/}
}
TY - JOUR AU - D. O. Trunin TI - On one approach to the optimization of state-linear controlled systems with terminal constraints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 89 EP - 95 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/ LA - ru ID - INTO_2022_213_a8 ER -
%0 Journal Article %A D. O. Trunin %T On one approach to the optimization of state-linear controlled systems with terminal constraints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 89-95 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/ %G ru %F INTO_2022_213_a8
D. O. Trunin. On one approach to the optimization of state-linear controlled systems with terminal constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 89-95. http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/