On one approach to the optimization of state-linear controlled systems with terminal constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 89-95

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of state-linear optimal control problems with terminal constraints, we consider the problem of nonlocal improvement of an admissible control preserving all terminal constraints. We apply an approach based on solving a special system of functional equations. The corresponding system is interpreted as a fixed-point problem; to the solution of this problem we apply the theory of fixed points.
Keywords: optimal control problem, nonlocal improvement, functional equation, fixed-point problem.
Mots-clés : terminal constraint
@article{INTO_2022_213_a8,
     author = {D. O. Trunin},
     title = {On one approach to the optimization of state-linear controlled systems with terminal constraints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/}
}
TY  - JOUR
AU  - D. O. Trunin
TI  - On one approach to the optimization of state-linear controlled systems with terminal constraints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 89
EP  - 95
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/
LA  - ru
ID  - INTO_2022_213_a8
ER  - 
%0 Journal Article
%A D. O. Trunin
%T On one approach to the optimization of state-linear controlled systems with terminal constraints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 89-95
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/
%G ru
%F INTO_2022_213_a8
D. O. Trunin. On one approach to the optimization of state-linear controlled systems with terminal constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 89-95. http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/