On one approach to the optimization of state-linear controlled systems with terminal constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 89-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of state-linear optimal control problems with terminal constraints, we consider the problem of nonlocal improvement of an admissible control preserving all terminal constraints. We apply an approach based on solving a special system of functional equations. The corresponding system is interpreted as a fixed-point problem; to the solution of this problem we apply the theory of fixed points.
Keywords: optimal control problem, nonlocal improvement, functional equation, fixed-point problem.
Mots-clés : terminal constraint
@article{INTO_2022_213_a8,
     author = {D. O. Trunin},
     title = {On one approach to the optimization of state-linear controlled systems with terminal constraints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/}
}
TY  - JOUR
AU  - D. O. Trunin
TI  - On one approach to the optimization of state-linear controlled systems with terminal constraints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 89
EP  - 95
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/
LA  - ru
ID  - INTO_2022_213_a8
ER  - 
%0 Journal Article
%A D. O. Trunin
%T On one approach to the optimization of state-linear controlled systems with terminal constraints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 89-95
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/
%G ru
%F INTO_2022_213_a8
D. O. Trunin. On one approach to the optimization of state-linear controlled systems with terminal constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 89-95. http://geodesic.mathdoc.fr/item/INTO_2022_213_a8/

[1] Buldaev A. S., “Metody nepodvizhnykh tochek v zadachakh optimizatsii upravlyaemykh sistem”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 183 (2020), 22–34

[2] Vasilev O. V., Lektsii po metodam optimizatsii, IGU, Irkutsk, 1994 | MR

[3] Gurman V. I., Matveev G. A., Trushkova E. A., “Sotsio-ekologo-ekonomicheskaya model regiona v parallelnykh vychisleniyakh”, Upravlenie bolshimi sistemami., 32 (2011), 109–138

[4] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989

[5] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[6] Srochko V. A., Aksenyushkina E. V., “Parametrizatsiya nekotorykh zadach upravleniya lineinymi sistemami”, Izv. Irkut. gos. un-ta. Ser. Mat., 30 (2019), 83–98 | MR | Zbl

[7] Buldaev A. S., Trunin D. O., “Nonlocal improvement of controls in state-linear systems with terminal constraints”, Autom. Remote Control., 70:5 (2009), 743–749 | DOI | MR | Zbl

[8] Gurman V. I., “Turnpike solutions in optimal control problems for quantum mechanical systems”, Autom. Remote Control., 72:6 (2011), 1248–1257 | DOI | MR | Zbl

[9] Krotov V. F., “Control of the quantum systems and some ideas of the optimal control theory”, Autom. Remote Control., 70:3 (2009), 357–365 | DOI | MR | Zbl

[10] Krotov V. F., Bulatov A. V., Baturina O. V., “Optimization of linear systems with controllable coefficients”, Autom. Remote Control., 72:6 (2011), 1199–1212 | DOI | MR | Zbl