On the well-posedness of an inverse problem for a degenerate evolutionary equation with the Dzhrbashyan--Nersesyan fractional derivative
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find necessary and sufficient conditions for the well-posedness of linear inverse coefficient problems for degenerate evolutionary equations with the Dzhrbashyan–Nersesyan fractional derivative in Banach spaces. We examine an inverse problem with a constant unknown coefficient under the generalized Showalter–Sidorov conditions and the condition of $p$-boundedness of a pair of operators in it. The general result is applied to the inverse problem for the system of dynamics of a viscoelastic Kelvin–Voigt fluid with the Dzhrbashyan–Nersesyan fractional derivative in time.
Keywords: fractional differential equation, fractional Dzhrbashyan–Nersesyan derivative, degenerate evolution equation
Mots-clés : inverse coefficient problem.
@article{INTO_2022_213_a7,
     author = {M. V. Plekhanova and E. M. Izhberdeeva},
     title = {On the well-posedness of an inverse problem for a degenerate evolutionary equation with the  {Dzhrbashyan--Nersesyan} fractional derivative},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - E. M. Izhberdeeva
TI  - On the well-posedness of an inverse problem for a degenerate evolutionary equation with the  Dzhrbashyan--Nersesyan fractional derivative
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 80
EP  - 88
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/
LA  - ru
ID  - INTO_2022_213_a7
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A E. M. Izhberdeeva
%T On the well-posedness of an inverse problem for a degenerate evolutionary equation with the  Dzhrbashyan--Nersesyan fractional derivative
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 80-88
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/
%G ru
%F INTO_2022_213_a7
M. V. Plekhanova; E. M. Izhberdeeva. On the well-posedness of an inverse problem for a degenerate evolutionary equation with the  Dzhrbashyan--Nersesyan fractional derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 80-88. http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/

[1] Glushak A. V., “Obratnaya zadacha dlya abstraktnogo differentsialnogo uravneniya Eilera—Puassona—Darbu”, Sovr. mat. Fundam. napr., 15 (2006), 126–141

[2] Glushak A. V., “Ob odnoi obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya drobnogo poryadka”, Mat. zametki., 87:5 (2010), 684–693 | DOI | MR | Zbl

[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm. SSR., 3:4 (1968), 1–28

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961 | MR

[5] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina—Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR., 179 (1988), 126–164

[6] Plekhanova M. V., Izhberdeeva E. M., “Obratnaya zadacha dlya evolyutsionnogo uravneniya s drobnoi proizvodnoi Dzhrbashyana—Nersesyana”, Mat. 3 Mezhdunar. konf. «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (Irkutsk, 2021), Izd-vo IGU, Irkutsk, 2021, 52–53

[7] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. mat., 73:2 (2009), 141–182 | MR | Zbl

[8] Pskhu A. V., “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sib. elektron. mat. izv., 13 (2016), 1078–1098 | MR | Zbl

[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[10] Fedorov V. E., Kostich M., “Zadacha identifikatsii dlya silno vyrozhdennykh evolyutsionnykh uravnenii s proizvodnoi Gerasimova—Kaputo”, Differ. uravn., 57:1 (2021), 100–113 | MR

[11] Fedorov V. E., Nagumanova A. V., “Obratnaya zadacha dlya evolyutsionnogo uravneniya s drobnoi proizvodnoi Gerasimova—Kaputo v sektorialnom sluchae”, Izv. Irkut. un-ta. Ser. Mat., 28 (2019), 123–137 | Zbl

[12] Fedorov V. E., Nagumanova A. V., “Lineinye obratnye zadachi dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 167 (2019), 97–111

[13] Fedorov V. E., Nagumanova A. V., “Lineinye obratnye zadachi dlya vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Gerasimova—Kaputo v sektorialnom sluchae”, Mat. zametki SVFU., 27:2 (2020), 54–76

[14] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fract. Calc. Appl. Anal., 20:3 (2017), 706–721 | DOI | MR | Zbl

[15] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann–Liouville derivative in the sectorial case”, Math. Meth. Appl. Sci., 44:15 (2021), 11961–11969 | DOI | MR | Zbl

[16] Fedorov V. E., Nagumanova A. V., Kostic M., “A class of inverse problems for fractional-order degenerate evolution equations”, J. Inv. Ill-Posed Probl., 29:2 (2021), 173–184 | DOI | MR | Zbl

[17] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Initial-value problems for linear equations with the Dzhrbashyan–Nersesyan derivative in Banach spaces”, Symmetry., 13:6 (2021), 1058 | DOI

[18] Liu Y., Rundell W., Yamamoto M., “Strong maximum principle for fractional diffusion equations and an application to an inverse source problem”, Fract. Calc. Appl. Anal., 19:4 (2016), 888–906 | DOI | MR | Zbl

[19] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space”, J. Sib. Univ. Math. Phys., 8:1 (2015), 55–63 | DOI | MR | Zbl

[20] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York–Basel, 2000 | MR | Zbl

[21] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, Utrecht–Boston, 2003 | MR | Zbl