Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_213_a7, author = {M. V. Plekhanova and E. M. Izhberdeeva}, title = {On the well-posedness of an inverse problem for a degenerate evolutionary equation with the {Dzhrbashyan--Nersesyan} fractional derivative}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {80--88}, publisher = {mathdoc}, volume = {213}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/} }
TY - JOUR AU - M. V. Plekhanova AU - E. M. Izhberdeeva TI - On the well-posedness of an inverse problem for a degenerate evolutionary equation with the Dzhrbashyan--Nersesyan fractional derivative JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 80 EP - 88 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/ LA - ru ID - INTO_2022_213_a7 ER -
%0 Journal Article %A M. V. Plekhanova %A E. M. Izhberdeeva %T On the well-posedness of an inverse problem for a degenerate evolutionary equation with the Dzhrbashyan--Nersesyan fractional derivative %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 80-88 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/ %G ru %F INTO_2022_213_a7
M. V. Plekhanova; E. M. Izhberdeeva. On the well-posedness of an inverse problem for a degenerate evolutionary equation with the Dzhrbashyan--Nersesyan fractional derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 80-88. http://geodesic.mathdoc.fr/item/INTO_2022_213_a7/
[1] Glushak A. V., “Obratnaya zadacha dlya abstraktnogo differentsialnogo uravneniya Eilera—Puassona—Darbu”, Sovr. mat. Fundam. napr., 15 (2006), 126–141
[2] Glushak A. V., “Ob odnoi obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya drobnogo poryadka”, Mat. zametki., 87:5 (2010), 684–693 | DOI | MR | Zbl
[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm. SSR., 3:4 (1968), 1–28
[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961 | MR
[5] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina—Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR., 179 (1988), 126–164
[6] Plekhanova M. V., Izhberdeeva E. M., “Obratnaya zadacha dlya evolyutsionnogo uravneniya s drobnoi proizvodnoi Dzhrbashyana—Nersesyana”, Mat. 3 Mezhdunar. konf. «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (Irkutsk, 2021), Izd-vo IGU, Irkutsk, 2021, 52–53
[7] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. mat., 73:2 (2009), 141–182 | MR | Zbl
[8] Pskhu A. V., “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sib. elektron. mat. izv., 13 (2016), 1078–1098 | MR | Zbl
[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[10] Fedorov V. E., Kostich M., “Zadacha identifikatsii dlya silno vyrozhdennykh evolyutsionnykh uravnenii s proizvodnoi Gerasimova—Kaputo”, Differ. uravn., 57:1 (2021), 100–113 | MR
[11] Fedorov V. E., Nagumanova A. V., “Obratnaya zadacha dlya evolyutsionnogo uravneniya s drobnoi proizvodnoi Gerasimova—Kaputo v sektorialnom sluchae”, Izv. Irkut. un-ta. Ser. Mat., 28 (2019), 123–137 | Zbl
[12] Fedorov V. E., Nagumanova A. V., “Lineinye obratnye zadachi dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 167 (2019), 97–111
[13] Fedorov V. E., Nagumanova A. V., “Lineinye obratnye zadachi dlya vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Gerasimova—Kaputo v sektorialnom sluchae”, Mat. zametki SVFU., 27:2 (2020), 54–76
[14] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fract. Calc. Appl. Anal., 20:3 (2017), 706–721 | DOI | MR | Zbl
[15] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann–Liouville derivative in the sectorial case”, Math. Meth. Appl. Sci., 44:15 (2021), 11961–11969 | DOI | MR | Zbl
[16] Fedorov V. E., Nagumanova A. V., Kostic M., “A class of inverse problems for fractional-order degenerate evolution equations”, J. Inv. Ill-Posed Probl., 29:2 (2021), 173–184 | DOI | MR | Zbl
[17] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Initial-value problems for linear equations with the Dzhrbashyan–Nersesyan derivative in Banach spaces”, Symmetry., 13:6 (2021), 1058 | DOI
[18] Liu Y., Rundell W., Yamamoto M., “Strong maximum principle for fractional diffusion equations and an application to an inverse source problem”, Fract. Calc. Appl. Anal., 19:4 (2016), 888–906 | DOI | MR | Zbl
[19] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space”, J. Sib. Univ. Math. Phys., 8:1 (2015), 55–63 | DOI | MR | Zbl
[20] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York–Basel, 2000 | MR | Zbl
[21] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, Utrecht–Boston, 2003 | MR | Zbl