Inverse problem for the Boussinesq--Love equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 72-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an abstract, high-order, incomplete Sobolev-type equation, an inverse problem with final redefinition is considered. Conditions for the unique solvability of the problem are found. Some special cases are considered. The main result contains necessary and sufficient conditions for the existence and uniqueness of a solution of the inverse problem for high-order, Sobolev-type equations. This technique is applied to the study of the inverse problem for the Boussinesq–Love equation.
Keywords: high-order Sobolev-type equation, inverse problem, unique solvability.
Mots-clés : Boussinesq–Love equation
@article{INTO_2022_213_a6,
     author = {A. A. Mukhametyarova},
     title = {Inverse problem for the {Boussinesq--Love} equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {72--79},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/}
}
TY  - JOUR
AU  - A. A. Mukhametyarova
TI  - Inverse problem for the Boussinesq--Love equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 72
EP  - 79
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/
LA  - ru
ID  - INTO_2022_213_a6
ER  - 
%0 Journal Article
%A A. A. Mukhametyarova
%T Inverse problem for the Boussinesq--Love equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 72-79
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/
%G ru
%F INTO_2022_213_a6
A. A. Mukhametyarova. Inverse problem for the Boussinesq--Love equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 72-79. http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/

[1] Zamyshlyaeva A. A., “Stokhasticheskie nepolnye lineinye uravneniya sobolevskogo tipa vysokogo poryadka s additivnym belym shumom”, Vestn. YuUrGU. Ser. Mat. model. program., 2012, no. 14, 73–82 | MR | Zbl

[2] Mukhametyarova A. A., “Ob odnoi obratnoi zadache dlya nepolnogo uravneniya sobolevskogo tipa vysokogo poryadka”, Mat. 3 Mezhdunar. konf. «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (Irkutsk, 2021), Izd-vo IGU, Irkutsk, 2021, 67–71

[3] Sviridyuk G. A., Bayazitova A. A., “Obratnaya zadacha dlya uravnenii Barenblatta—Zheltova—Kochinoi na grafe”, Cb. tr. Mezhdunar. konf. «Differentsialnye uravneniya, teoriya funktsii i prilozheniya», posvyaschennoi 100-letiyu so dnya rozhdeniya akad. I. N. Vekua, Novosibirsk, 2007, 244–250

[4] Fedorov V. E., Urazaeva A. V., “An inverse problem for linear Sobolev-type equations”, J. Inv. Ill-Posed Probl., 12:5 (2004), 1–9 | MR

[5] Kozhanov A. I., Composite Type Equations and Inverse Problems, Utrecht, VSP, 1999 | MR | Zbl

[6] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, New York, Marcel Dekker, 1999 | MR

[7] Pyatkov S. G., Operator Theory. Nonclassical Problems, Utrecht–Boston–Tokyo, VSP, 2002 | MR | Zbl

[8] Romanov V. G., Investigation Methods for Inverse Problems, Utrecht–Boston–Tokyo, VSP, 2002 | MR | Zbl

[9] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl

[10] Zamyshlyaeva A. A., Lut A. V., “Inverse problem for Sobolev type mathematical models”, Vestn. YuUrGU. Ser. Mat. model. program., 12:2 (2019), 25–36 | Zbl

[11] Zamyshlyaeva A. A., Muravyev A. S., “Inverse problem for Sobolev type equation of the second order”, Vestn. YuUrGU. Ser. Mat. model. program., 8:3 (2016), 5–12 | MR | Zbl