Inverse problem for the Boussinesq--Love equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 72-79
Voir la notice de l'article provenant de la source Math-Net.Ru
For an abstract, high-order, incomplete Sobolev-type equation, an inverse problem with final redefinition is considered. Conditions for the unique solvability of the problem are found. Some special cases are considered. The main result contains necessary and sufficient conditions for the existence and uniqueness of a solution of the inverse problem for high-order, Sobolev-type equations. This technique is applied to the study of the inverse problem for the Boussinesq–Love equation.
Keywords:
high-order Sobolev-type equation, inverse problem, unique solvability.
Mots-clés : Boussinesq–Love equation
Mots-clés : Boussinesq–Love equation
@article{INTO_2022_213_a6,
author = {A. A. Mukhametyarova},
title = {Inverse problem for the {Boussinesq--Love} equation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {72--79},
publisher = {mathdoc},
volume = {213},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/}
}
TY - JOUR AU - A. A. Mukhametyarova TI - Inverse problem for the Boussinesq--Love equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 72 EP - 79 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/ LA - ru ID - INTO_2022_213_a6 ER -
A. A. Mukhametyarova. Inverse problem for the Boussinesq--Love equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 72-79. http://geodesic.mathdoc.fr/item/INTO_2022_213_a6/