On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 63-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The solvability of synthesis problems for distributed and boundary controls in minimizing problems for piecewise linear functionals for oscillatory processes described by partial integro-differential equations with Fredholm integral operators are examined. For the Bellman functional, a specific integro-differential equation is obtained. An algorithm for constructing a solution of the control synthesis problem of distributed and boundary controls is described. A procedure for determining controls as functions (functionals) of the state of the controlled process is constructed.
Keywords: integro-differential equation, Fredholm operator, generalized solution, Bellman functional, optimal control synthesis.
Mots-clés : Fréchet differential
@article{INTO_2022_213_a5,
     author = {A. K. Kerimbekov and E. F. Abdyldaeva and A. A. Anarbekova},
     title = {On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {63--71},
     year = {2022},
     volume = {213},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/}
}
TY  - JOUR
AU  - A. K. Kerimbekov
AU  - E. F. Abdyldaeva
AU  - A. A. Anarbekova
TI  - On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 63
EP  - 71
VL  - 213
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/
LA  - ru
ID  - INTO_2022_213_a5
ER  - 
%0 Journal Article
%A A. K. Kerimbekov
%A E. F. Abdyldaeva
%A A. A. Anarbekova
%T On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 63-71
%V 213
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/
%G ru
%F INTO_2022_213_a5
A. K. Kerimbekov; E. F. Abdyldaeva; A. A. Anarbekova. On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 63-71. http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/

[1] Arguchintsev A. V., Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007

[2] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[3] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[4] Egorov A. I., Znamenskaya L. N., Vvedenie v teoriyu upravleniya sistemami s raspredelennymi parametrami, Lan, SPb., 2017

[5] Kerimbekov A., Nelineinoe optimalnoe upravlenie lineinymi sistemami s raspredelennymi parametrami, Ilim, Bishkek, 2003

[6] Kerimbekov A., “Sintez raspredelennogo optimalnogo upravleniya v zadache slezheniya pri optimizatsii teplovykh protsessov, opisyvaemykh integro-differentsialnymi uravneniyami”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 183 (2020), 85–97 | MR

[7] Kerimbekov A., “O razreshimosti zadachi sinteza raspredelennogo i granichnogo upravlenii pri optimizatsii kolebatelnykh protsessov”, Tr. In-ta mat. mekh. UrO RAN., 27:2 (2021), 128–140 | MR

[8] Kerimbekov A., Abdyldaeva E. F, “O ravnykh otnosheniyakh v zadache granichnogo vektornogo upravleniya uprugimi kolebaniyami, opisyvaemymi fredgolmovymi integro-differentsialnymi uravneniyami”, Tr. In-ta mat. mekh. UrO RAN., 22:2 (2016), 163–176 | MR

[9] Kerimbekov A., Nametkulova R. Zh., Kadirimbetova A. K., “Usloviya optimalnosti v zadache upravleniya teplovymi protsessami s integro-differentsialnym uravneniem”, Izv. Irkut. gos. un-ta. Ser. Mat., 15 (2016), 50–61 | Zbl

[10] Kerimbekov A., Nametkulova R. Zh., Kadirimbetova A. K., “Priblizhennoe reshenie zadachi raspredelennogo i granichnogo upravleniya teplovym protsessom”, Izv. Irkut. gos. un-ta. Ser. Mat., 16 (2016), 71–78

[11] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Fizmatlit, M., 1972

[12] Sirazetdinov T. K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977 | MR

[13] Arguchintsev A. V., Kedrina M. S., “Determination of functional parameters in boundary conditions of linear hyperbolic systems by optimal control methods”, J. Phys. Conf. Ser., 1847 (2021), 012014 | DOI

[14] Arguchintsev A., Poplevko P., “An optimal control problem by parabolic equation with boundary smooth control and an integral constraint”, Num. Alg. Contr. Optim., 8:2 (2018), 193–202 | DOI | MR | Zbl

[15] Arguchintsev A., Poplevko P., “An optimal control problem by a hybrid system of hyperbolic and ordinary differential equations”, Games., 12:1 (2021), 23 | DOI | MR | Zbl

[16] Arguchintsev A., Poplevko P., “An optimal control problem by a hyperbolic system with boundary delay”, Izv. Irkut. gos. un-ta. Ser. Mat., 35 (2021), 3–17 | DOI | MR | Zbl

[17] Egorov A. I., “Optimal stabilization of systems with distributed parameters”, Optim. Tech. IFIP Tech. Conf., 27 (1975), 167–172 | Zbl

[18] Kerimbekov A., Abdyldaeva E. F., “Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations”, Eurasian Math., 26 (2015), 28–40 | MR

[19] Kerimbekov A., Abdyldaeva E. F., “On the solvability of a nonlinear tracking problem under boundary control for the elastic oscillations described by Fredholm integro-differential equations”, 27th IFIP Conf. on System Modeling and Optimization, Springer, Sophia Antipolis, France, 2016, 312–321 | DOI | MR

[20] Kerimbekov A., Abdyldaeva E. F., “The optimal vector control for the elastic oscillations described by Fredholm integro-differential equations”, Analysis and Partial Differential Equations: Perspectives from Developing Countries, Springer, 2019, 14–30 | MR | Zbl

[21] Kerimbekov A., Abdyldaeva E. F., Duyshenalieva U. E., “Generalized solution of a boundary value problem under point exposure of external forces”, Int. J. Pure Appl. Math., 113:4 (2017), 87–101 | DOI

[22] Kerimbekov A., Seidakmat E., “On solvability of tracking problem under nonlinear boundary control”, 11th ISAAC Congr. “Analysis, Probability, Applications, and Computation”, Springer, 2019, 312–321 | MR

[23] Kerimbekov A., Tairova O. K., “On the solvability of synthesis problem for optimal point control of oscillatory processes”, IFAC-PapersOnLine., 51 (2018), 754–758 | DOI

[24] Sachs E. W., Strauss A. K., “Efficient solution of a partial integro-differntial equation in finance”, Appl. Numer. Math., 58:11 (2008), 1687–1703 | DOI | MR | Zbl

[25] Thorwe J., Bhaleker S., “Solving partial integro-differential equations using Laplace transform method”, Am. J. Comput. Appl. Math., 2:3 (2012), 101–104 | DOI