On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 63-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of synthesis problems for distributed and boundary controls in minimizing problems for piecewise linear functionals for oscillatory processes described by partial integro-differential equations with Fredholm integral operators are examined. For the Bellman functional, a specific integro-differential equation is obtained. An algorithm for constructing a solution of the control synthesis problem of distributed and boundary controls is described. A procedure for determining controls as functions (functionals) of the state of the controlled process is constructed.
Keywords: integro-differential equation, Fredholm operator, generalized solution, Bellman functional, Fréchet differential, optimal control synthesis.
@article{INTO_2022_213_a5,
     author = {A. K. Kerimbekov and E. F. Abdyldaeva and A. A. Anarbekova},
     title = {On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/}
}
TY  - JOUR
AU  - A. K. Kerimbekov
AU  - E. F. Abdyldaeva
AU  - A. A. Anarbekova
TI  - On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 63
EP  - 71
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/
LA  - ru
ID  - INTO_2022_213_a5
ER  - 
%0 Journal Article
%A A. K. Kerimbekov
%A E. F. Abdyldaeva
%A A. A. Anarbekova
%T On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 63-71
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/
%G ru
%F INTO_2022_213_a5
A. K. Kerimbekov; E. F. Abdyldaeva; A. A. Anarbekova. On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 63-71. http://geodesic.mathdoc.fr/item/INTO_2022_213_a5/