Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_213_a3, author = {A. S. Buldaev and V. A. Dumnov}, title = {Operator forms and methods of the maximum principle in optimal control problems with constraints}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {47--53}, publisher = {mathdoc}, volume = {213}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/} }
TY - JOUR AU - A. S. Buldaev AU - V. A. Dumnov TI - Operator forms and methods of the maximum principle in optimal control problems with constraints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 47 EP - 53 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/ LA - ru ID - INTO_2022_213_a3 ER -
%0 Journal Article %A A. S. Buldaev %A V. A. Dumnov %T Operator forms and methods of the maximum principle in optimal control problems with constraints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 47-53 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/ %G ru %F INTO_2022_213_a3
A. S. Buldaev; V. A. Dumnov. Operator forms and methods of the maximum principle in optimal control problems with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 47-53. http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/