Operator forms and methods of the maximum principle in optimal control problems with constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

New constructive forms of well-known optimality conditions for constrained controlled systems in the form of fixed point problems in the control space are considered. Optimality conditions proposed allows one to apply the theory and methods of fixed points to develop new iterative algorithms for finding extremal controls in the class of constrained optimal control problems.
Keywords: controlled system with constraints, maximum principle, control operator, fixed point problem, iterative algorithm.
@article{INTO_2022_213_a3,
     author = {A. S. Buldaev and V. A. Dumnov},
     title = {Operator forms and methods of the maximum principle in optimal control problems with constraints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {47--53},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/}
}
TY  - JOUR
AU  - A. S. Buldaev
AU  - V. A. Dumnov
TI  - Operator forms and methods of the maximum principle in optimal control problems with constraints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 47
EP  - 53
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/
LA  - ru
ID  - INTO_2022_213_a3
ER  - 
%0 Journal Article
%A A. S. Buldaev
%A V. A. Dumnov
%T Operator forms and methods of the maximum principle in optimal control problems with constraints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 47-53
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/
%G ru
%F INTO_2022_213_a3
A. S. Buldaev; V. A. Dumnov. Operator forms and methods of the maximum principle in optimal control problems with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 47-53. http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/

[1] Buldaev A. S., Metody vozmuschenii v zadachakh uluchsheniya i optimizatsii upravlyaemykh sistem, Izd-vo Buryat. un-ta, Ulan-Ude, 2008

[2] Buldaev A. S., Khishektueva I.-Kh. D., “Metod nepodvizhnykh tochek v zadachakh optimizatsii nelineinykh sistem po upravlyayuschim funktsiyam i parametram”, Izv. Irkut. gos. un-ta. Ser. Mat., 19 (2017), 89–104 | MR | Zbl

[3] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo IGU, Irkutsk, 1994 | MR

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[5] Gurman V. I., Baturin V. A., Danilina E. V. i dr., Novye metody uluchsheniya upravlyaemykh protsessov, Nauka, Novosibirsk, 1987

[6] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989

[7] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[8] Buldaev A. S., “Operator forms of the maximum principle and iterative algorithms in optimal control problems”, Commun. Comput. Inform. Syst., 1340 (2020), 101–112 | MR

[9] Buldaev A. S., Burlakov I. D., “About one approach to numerical solution of nonlinear optimal speed problems”, Vestn. YuUrGU. Ser. Mat. model. program., 11:4 (2018), 55–66 | MR | Zbl

[10] Buldaev A. S., Burlakov I. D., “On a method for finding extremal controls in systems with constraints”, Izv. Irkut. gos. un-ta. Ser. Mat., 30 (2019), 16–30 | MR | Zbl

[11] Krotov V. F., Global Methods in Optimal Control, Marcel Dekker, New York, 1996 | MR | Zbl