Operator forms and methods of the maximum principle in optimal control problems with constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 47-53
Voir la notice de l'article provenant de la source Math-Net.Ru
New constructive forms of well-known optimality conditions for constrained controlled systems in the form of fixed point problems in the control space are considered. Optimality conditions proposed allows one to apply the theory and methods of fixed points to develop new iterative algorithms for finding extremal controls in the class of constrained optimal control problems.
Keywords:
controlled system with constraints, maximum principle, control operator, fixed point problem, iterative algorithm.
@article{INTO_2022_213_a3,
author = {A. S. Buldaev and V. A. Dumnov},
title = {Operator forms and methods of the maximum principle in optimal control problems with constraints},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {47--53},
publisher = {mathdoc},
volume = {213},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/}
}
TY - JOUR AU - A. S. Buldaev AU - V. A. Dumnov TI - Operator forms and methods of the maximum principle in optimal control problems with constraints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 47 EP - 53 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/ LA - ru ID - INTO_2022_213_a3 ER -
%0 Journal Article %A A. S. Buldaev %A V. A. Dumnov %T Operator forms and methods of the maximum principle in optimal control problems with constraints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 47-53 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/ %G ru %F INTO_2022_213_a3
A. S. Buldaev; V. A. Dumnov. Operator forms and methods of the maximum principle in optimal control problems with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 47-53. http://geodesic.mathdoc.fr/item/INTO_2022_213_a3/