Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a9, author = {R. K. Tagiyev and Sh. I. Maharramli}, title = {Variational statement of a coefficient inverse problem for a multidimensional parabolic equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {92--99}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a9/} }
TY - JOUR AU - R. K. Tagiyev AU - Sh. I. Maharramli TI - Variational statement of a coefficient inverse problem for a multidimensional parabolic equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 92 EP - 99 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a9/ LA - ru ID - INTO_2022_212_a9 ER -
%0 Journal Article %A R. K. Tagiyev %A Sh. I. Maharramli %T Variational statement of a coefficient inverse problem for a multidimensional parabolic equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 92-99 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a9/ %G ru %F INTO_2022_212_a9
R. K. Tagiyev; Sh. I. Maharramli. Variational statement of a coefficient inverse problem for a multidimensional parabolic equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 92-99. http://geodesic.mathdoc.fr/item/INTO_2022_212_a9/