On the unique solvability of a problem of identifying lower coefficients in a multidimensional system of composite type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 73-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the existence and uniqueness theorem for a solution of the problem of determining four lower coefficients in a composite multidimensional system in the case of the Cauchy data.
Mots-clés : coefficient identification problem
Keywords: inverse problem, partial differential equation, composite systems, weak approximation method.
@article{INTO_2022_212_a7,
     author = {R. V. Sorokin and T. N. Shipina},
     title = {On the  unique solvability of a problem of identifying lower coefficients in a multidimensional system of composite type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--83},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a7/}
}
TY  - JOUR
AU  - R. V. Sorokin
AU  - T. N. Shipina
TI  - On the  unique solvability of a problem of identifying lower coefficients in a multidimensional system of composite type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 73
EP  - 83
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a7/
LA  - ru
ID  - INTO_2022_212_a7
ER  - 
%0 Journal Article
%A R. V. Sorokin
%A T. N. Shipina
%T On the  unique solvability of a problem of identifying lower coefficients in a multidimensional system of composite type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 73-83
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a7/
%G ru
%F INTO_2022_212_a7
R. V. Sorokin; T. N. Shipina. On the  unique solvability of a problem of identifying lower coefficients in a multidimensional system of composite type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 73-83. http://geodesic.mathdoc.fr/item/INTO_2022_212_a7/

[6] Belov Yu. Ya., Kantor S. A., Metod slaboi approksimatsii, KrasGU, Krasnoyarsk, 1999

[7] Vyacheslavova P. Yu., Sorokin R. V., “Zadacha identifikatsii koeffitsientov pri mladshikh chlenakh v sisteme sostavnogo tipa”, Zh. Sib. Feder. un-ta. Ser. Mat. Fiz., 2:3 (2009), 288–297 | Zbl

[8] Rikhtmaier R. D., “Zvuk i teploprovodnost”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, Nauka, Novosibirsk, 1966, 183–185

[9] Sorokin R. V., Shipina T. N., “Ob odnoznachnoi razreshimosti odnoi obratnoi zadachi dlya sistemy sostavnogo tipa v mnogomernom sluchae”, Vychisl. tekhnologii., 9:3 (2004), 59–68

[10] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | MR

[11] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002 | MR | Zbl

[12] Belov Yu. Ya., “On estimates of solutions of the split problems for some multi-dimensional partial differential equations”, Zh. Sib. Feder. un-ta. Ser. Mat. Fiz., 2:3 (2009), 258–270 | MR | Zbl

[13] Belov Yu. Ya., Shipina T. N., “The problem of determining the source function for a system of composite type”, J. Inv. Ill-Posed Probl., 6:4 (1998), 287–308 | MR | Zbl