Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a6, author = {M. V. Plekhanova and A. F. Shuklina}, title = {Mixed control for semilinear fractional equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {64--72}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/} }
TY - JOUR AU - M. V. Plekhanova AU - A. F. Shuklina TI - Mixed control for semilinear fractional equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 64 EP - 72 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/ LA - ru ID - INTO_2022_212_a6 ER -
%0 Journal Article %A M. V. Plekhanova %A A. F. Shuklina %T Mixed control for semilinear fractional equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 64-72 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/ %G ru %F INTO_2022_212_a6
M. V. Plekhanova; A. F. Shuklina. Mixed control for semilinear fractional equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 64-72. http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/
[1] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12 (1948), 529–539
[2] Plekhanova M. V., “Zadachi startovogo upravleniya dlya evolyutsionnykh uravnenii drobnogo poryadka”, Chelyab. fiz.-mat. zh., 1:3 (2016), 15–36 | Zbl
[3] Plekhanova M. V., “Silnoe reshenie i zadachi optimalnogo upravleniya dlya klassa lineinykh uravnenii drobnogo poryadka”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 42–51
[4] Plekhanova M. V., “Razreshimost zadach upravleniya dlya vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Chelyab. fiz.-mat. zh., 2:1 (2017), 53–65 | Zbl
[5] Plekhanova M. V., “Silnye resheniya nelineinogo vyrozhdennogo evolyutsionnogo uravneniya drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:3 (2016), 61–74 | Zbl
[6] Plekhanova M. V., Baibulatova G. D., “Zadachi optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii s zapazdyvaniem”, Chelyab. fiz.-mat. zh., 3:3 (2018), 319–331 | MR | Zbl
[7] Plekhanova M. V., Islamova A. F., “O razreshimosti zadach smeshannogo optimalnogo upravleniya lineinymi raspredelennymi sistemami”, Izv. vuzov. Mat., 2011, no. 7, 37–47 | Zbl
[8] Plekhanova M. V., Islamova A. F., “Zadachi s zhestkim smeshannym upravleniem dlya linearizovannogo uravneniya Bussineska”, Differ. uravn., 48:4 (2012), 565 | MR | Zbl
[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[10] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[11] Falaleev M. V., “Vyrozhdennye integro-differentsialnye uravneniya tipa svertki v banakhovykh prostranstvakh”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 17 (2016), 77–85 | Zbl
[12] Fedorov V. E., Abdrakhmanova A. A., “Nachalnaya zadacha dlya uravnenii raspredelennogo poryadka s ogranichennym operatorom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 188 (2020), 14–22
[13] Fedorov V. E., Nagumanova A. V., “Lineinye obratnye zadachi dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 97–111
[14] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999
[15] Shuklina A. F., Plekhanova M. V., “Zadachi smeshannogo upravleniya dlya sistemy Soboleva”, Chelyab. fiz.-mat. zh., 1:2 (2016), 78–84 | MR | Zbl
[16] Bajlekova E. G., Fractional evolution equations in Banach spaces, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl
[17] Falaleev M. V., “Fundamental undamental operator-valued functions of integrodifferential operators in Banach spaces”, J. Math. Sci., 230:5 (2018), 782–785 | DOI | MR | Zbl
[18] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl
[19] Mainardi F., Luchko Y. F., Pagnini G., “The fundamental solution of the space-time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4:2 (2001), 153–192 | MR | Zbl
[20] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, Boston, 1974 | MR | Zbl
[21] Plekhanova M. V., “Degenerate distributed control systems with fractional time derivative”, Ural Math. J., 2:2 (2016), 58–71 | DOI | Zbl
[22] Plekhanova M. V., “Distributed control problems for a class of degenerate semilinear evolution equations”, J. Comput. Appl. Math., 312 (2017), 39–46 | DOI | MR | Zbl
[23] Plekhanova M. V., “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Mat. Sci. Forum., 845 (2016), 170–173 | DOI
[24] Plekhanova M. V., “Optimal control existence for degenerate infinite dimensional systems of fractional order”, IFAC-PapersOnLine., 51:32 (2018), 669–674 | DOI | MR
[25] Plekhanova M. V., “Optimal control for quasilinear degenerate systems of higher order”, J. Math. Sci., 219 (2016), 236–244 | DOI | MR | Zbl
[26] Plekhanova M. V., Baybulatova G. D., “Problems of hard control for a class of degenerate fractional order evolution equations”, Lect. Notes Comp. Sci., 11548 (2019), 501–512 | DOI | MR | Zbl
[27] Tarasov V. E., Fractional Dynamics, Higher Education Press, Beijing, 2010 | MR | Zbl