Mixed control for semilinear fractional equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we consider problems in which two types of controls (distributed and starting control functions) are used simultaneously. The main results concern the solvability of a class of optimal control problems for systems whose states are described by equations in Banach spaces that are resolved with respect to the Gerasimov–Caputo fractional derivative and nonlinear in the lowest fractional derivatives. We consider convex lower semicontinuous, coercive functionals, which are compromise or control-independent. Abstract results are demonstrated by an example of a control problem for a fractional model of metastable states in semiconductors.
Keywords: optimal control, mixed control, fractional equation, Gerasimov–Caputo derivative, nonlinear evolutionary equation.
@article{INTO_2022_212_a6,
     author = {M. V. Plekhanova and A. F. Shuklina},
     title = {Mixed control for semilinear fractional equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - A. F. Shuklina
TI  - Mixed control for semilinear fractional equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 64
EP  - 72
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/
LA  - ru
ID  - INTO_2022_212_a6
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A A. F. Shuklina
%T Mixed control for semilinear fractional equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 64-72
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/
%G ru
%F INTO_2022_212_a6
M. V. Plekhanova; A. F. Shuklina. Mixed control for semilinear fractional equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 64-72. http://geodesic.mathdoc.fr/item/INTO_2022_212_a6/

[1] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12 (1948), 529–539

[2] Plekhanova M. V., “Zadachi startovogo upravleniya dlya evolyutsionnykh uravnenii drobnogo poryadka”, Chelyab. fiz.-mat. zh., 1:3 (2016), 15–36 | Zbl

[3] Plekhanova M. V., “Silnoe reshenie i zadachi optimalnogo upravleniya dlya klassa lineinykh uravnenii drobnogo poryadka”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 42–51

[4] Plekhanova M. V., “Razreshimost zadach upravleniya dlya vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Chelyab. fiz.-mat. zh., 2:1 (2017), 53–65 | Zbl

[5] Plekhanova M. V., “Silnye resheniya nelineinogo vyrozhdennogo evolyutsionnogo uravneniya drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:3 (2016), 61–74 | Zbl

[6] Plekhanova M. V., Baibulatova G. D., “Zadachi optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii s zapazdyvaniem”, Chelyab. fiz.-mat. zh., 3:3 (2018), 319–331 | MR | Zbl

[7] Plekhanova M. V., Islamova A. F., “O razreshimosti zadach smeshannogo optimalnogo upravleniya lineinymi raspredelennymi sistemami”, Izv. vuzov. Mat., 2011, no. 7, 37–47 | Zbl

[8] Plekhanova M. V., Islamova A. F., “Zadachi s zhestkim smeshannym upravleniem dlya linearizovannogo uravneniya Bussineska”, Differ. uravn., 48:4 (2012), 565 | MR | Zbl

[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[10] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[11] Falaleev M. V., “Vyrozhdennye integro-differentsialnye uravneniya tipa svertki v banakhovykh prostranstvakh”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 17 (2016), 77–85 | Zbl

[12] Fedorov V. E., Abdrakhmanova A. A., “Nachalnaya zadacha dlya uravnenii raspredelennogo poryadka s ogranichennym operatorom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 188 (2020), 14–22

[13] Fedorov V. E., Nagumanova A. V., “Lineinye obratnye zadachi dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 97–111

[14] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[15] Shuklina A. F., Plekhanova M. V., “Zadachi smeshannogo upravleniya dlya sistemy Soboleva”, Chelyab. fiz.-mat. zh., 1:2 (2016), 78–84 | MR | Zbl

[16] Bajlekova E. G., Fractional evolution equations in Banach spaces, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl

[17] Falaleev M. V., “Fundamental undamental operator-valued functions of integrodifferential operators in Banach spaces”, J. Math. Sci., 230:5 (2018), 782–785 | DOI | MR | Zbl

[18] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl

[19] Mainardi F., Luchko Y. F., Pagnini G., “The fundamental solution of the space-time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4:2 (2001), 153–192 | MR | Zbl

[20] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, Boston, 1974 | MR | Zbl

[21] Plekhanova M. V., “Degenerate distributed control systems with fractional time derivative”, Ural Math. J., 2:2 (2016), 58–71 | DOI | Zbl

[22] Plekhanova M. V., “Distributed control problems for a class of degenerate semilinear evolution equations”, J. Comput. Appl. Math., 312 (2017), 39–46 | DOI | MR | Zbl

[23] Plekhanova M. V., “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Mat. Sci. Forum., 845 (2016), 170–173 | DOI

[24] Plekhanova M. V., “Optimal control existence for degenerate infinite dimensional systems of fractional order”, IFAC-PapersOnLine., 51:32 (2018), 669–674 | DOI | MR

[25] Plekhanova M. V., “Optimal control for quasilinear degenerate systems of higher order”, J. Math. Sci., 219 (2016), 236–244 | DOI | MR | Zbl

[26] Plekhanova M. V., Baybulatova G. D., “Problems of hard control for a class of degenerate fractional order evolution equations”, Lect. Notes Comp. Sci., 11548 (2019), 501–512 | DOI | MR | Zbl

[27] Tarasov V. E., Fractional Dynamics, Higher Education Press, Beijing, 2010 | MR | Zbl