On small solutions of nonlinear operator equations with noninvertible operator in the principal term
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a nonlinear operator equation with vector parameter, which does not satisfy the implicit operator theorem since the operator in the principal term is not continuously invertible at a given point. We prove a sufficient conditions of existing small continuous solution and propose an algorithm of constructing such solution in some domain.
Keywords: Banach space, nonlinear operator, operator equation, continuous solution, sectorial neighborhood of zero.
@article{INTO_2022_212_a5,
     author = {R. Yu. Leontiev},
     title = {On small solutions of nonlinear operator equations with noninvertible operator in the principal term},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/}
}
TY  - JOUR
AU  - R. Yu. Leontiev
TI  - On small solutions of nonlinear operator equations with noninvertible operator in the principal term
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 57
EP  - 63
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/
LA  - ru
ID  - INTO_2022_212_a5
ER  - 
%0 Journal Article
%A R. Yu. Leontiev
%T On small solutions of nonlinear operator equations with noninvertible operator in the principal term
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 57-63
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/
%G ru
%F INTO_2022_212_a5
R. Yu. Leontiev. On small solutions of nonlinear operator equations with noninvertible operator in the principal term. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 57-63. http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/

[1] Leontev R. Yu., “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii”, Vestn. Buryat. gos. un-ta. Mat. inform., 2009, no. 9, 77–83

[2] Leontev R. Yu., “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii”, Tr. Mezhdunar. konf. «Nauka v vuzakh: matematika, fizika, informatika. Problemy vysshego i srednego professionalnogo obrazovaniya» (Moskva, 2009), Izd-vo RUDN, M., 2009, 276–278

[3] Leontev R. Yu., “Iteratsionnye metody poiska reshenii nelineinykh uravnenii v sektorialnykh oblastyakh”, Tr. Mezhdunar. nauch. semin. po obratnym i nekorrektno postavlennym zadacham, Izd-vo RUDN, M., 2015, 116

[4] Leontev R. Yu., “O malykh resheniyakh nelineinykh operatornykh uravnenii s vektornym parametrom”, Mat. XII Mezhdunar. konf. «Matematicheskoe i kompyuternoe modelirovanie estestvennonauchnykh i sotsialnykh problem», Izd-vo PGU, Penza, 2018, 80–83

[5] Leontev R. Yu., Sidorov N. A., “Uniformizatsiya i posledovatelnye priblizheniya reshenii nelineinykh uravnenii s vektornym parametrom”, Izv. Irkutsk. gos. un-ta. Mat., 4:3 (2011), 116–123 | MR

[6] Sidorov N. A., “Minimalnye vetvi reshenii nelineinykh uravnenii i asimptoticheskie regulyarizatory”, Nelin. granich. zadachi., 2004, no. 14, 161–164 | Zbl