On small solutions of nonlinear operator equations with noninvertible operator in the principal term
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 57-63
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine a nonlinear operator equation with vector parameter, which does not satisfy the implicit operator theorem since the operator in the principal term is not continuously invertible at a given point. We prove a sufficient conditions of existing small continuous solution and propose an algorithm of constructing such solution in some domain.
Keywords:
Banach space, nonlinear operator, operator equation, continuous solution, sectorial neighborhood of zero.
@article{INTO_2022_212_a5,
author = {R. Yu. Leontiev},
title = {On small solutions of nonlinear operator equations with noninvertible operator in the principal term},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {57--63},
publisher = {mathdoc},
volume = {212},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/}
}
TY - JOUR AU - R. Yu. Leontiev TI - On small solutions of nonlinear operator equations with noninvertible operator in the principal term JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 57 EP - 63 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/ LA - ru ID - INTO_2022_212_a5 ER -
%0 Journal Article %A R. Yu. Leontiev %T On small solutions of nonlinear operator equations with noninvertible operator in the principal term %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 57-63 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/ %G ru %F INTO_2022_212_a5
R. Yu. Leontiev. On small solutions of nonlinear operator equations with noninvertible operator in the principal term. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 57-63. http://geodesic.mathdoc.fr/item/INTO_2022_212_a5/